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SUMMARY. Let X, = {Xp3; 7 » 0} be a sequence of Harris recurrent Markov chains

. Na
with X, having a general state space (S,, S,). A central limit theorem for E f,(X,;)is ostab-
j=0

lished in this paper where f, is a sequence of suitable measurable functions from &, to.

1. INTRODUCTION

In a recent paper Kulperger and Prakasa Rao (1989) studied the method
of bootstrap for finite state Markov chains. While extending their results
to the countable state space case, Athreya and Fuh (1989) established & central
limit theorem for a double array of Markov chains with countable state
gpace. The present paper extends that result to more general state spaces
under the assumption of existence of recurrent singletons. This is not as
restrictive as it may seem at first. It is known that if a Markov chain {X}
on a state space S with a countably generated o-algebra is Harris recurrent
(that is, there exists a o-finite measure ¢ on § such that ¢(4) > 0 implies
Py(Ty < ©)=1 for all # in 8, where P, refers to starting at x and
Tq=iuf{j:j > 1, Xje A}), then there exists an integer ny » 1 such that the
sequence Yp = X'mo’ n=0,1,2, ... is a regenerative sequence of random

variables, In  fact, there exist random terms o, &y, &g, ... such that
oyt 0<J < op—u—1, g —oq}, §=1,2,... are independent and

identically distributed cycles. The reader is refered to Athreya and Ney
(1978) and Nummelin (1984) for details,
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The motivation for proving a central limit theorem of the kind presented
in this paper comes from an attempt to prove the consistency of bootstrap

methods for a Harris recurrent Markov chain. In that context, for each n
one has an estimate P, of the transition probability and then bootstraps
using this Pn. It is of interest to show that the boogstrap is consistent if
Py is. This leads to a double array situation.

The central limit theorem and a weak law of large numbers are stated
in the next section, their proofs are given in Section 3, Alternative assump-
tions for the validity of the weak law is discussd in Section 4. Comprehen-
sive background discussions on Harris recurrent Markov chain are available
in. Nummelin (1984).

2. STATEMENT OF THE RESULTS

Let X,, = {X4qg;j » 0} be a sequence of Markov chains with state spaces
(Sn, Sn) such that for each n there exists a singleton A, e S, such that
Pra, (Tna, << o0) == 1, where Py, refers to the probability distribution of X,,
under Xy = @, and T'na, be the first hitting time of the Harris chain X, to
its recurrent point A, on the state space S,, namely,

00, if no such j exist.

TﬂAn =

Let 1

ThAn—
u,,(A)EE,,A,,( z I4(Xqy)) for Ae 8.

It is known (Nummelin, 1984) that vy(.) is o-finite and invariant for X n, that is,

va(.) = | valdy) Paly, )

where Pu(y, ) = P(Xy; €.|Xpny = y) is the transition kernel function of the
chain X,.

Assume that vn(Sp) = Ena,Tna, <00 and set my(.) =v,(.)/va(S,). Let Snd

Su— R be 8, measurable. We are interested in, proving a central limit theorem
N,

for X fu(Xng), where Ny— 00 a8 n— 0. We assume in what follows that
Jou0

Np— o0 a8 n— o0,

An important step in our proof of the central limit theorem is the weak
law below that is also of some independent interest.

Theorem 1. Let for p > 0 and e Xy,

m
On(p, 2) = sup L Z PP (z, Ap)—7n(As) | .
mppN, ' T g=1
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Ny
Let my = ’Z I, (Xnj) be the number of visits to Dy by {Xng: 0 € j & Ny} and
-0

fin(An) = N7lmg. Assume that the sequence of initial distrributions of Xng

satisfy

lim lim sup Edp(p, Xny) = 0. e (1)
p—»0 B

Then
Fn(Bn) —7n(An)=> 0 in probability,

where Ty(An) = (Bna, Tna,) ™
In Section 4, a variety of sufficient conditions to ensure (1) are discussed.
The next result is the central limit theorem.
Theorem 2. Assuming the following conditions hold,
(i) fneLym,), § fydm, =0 and 0%% -0,
(i) Bim inf mo(An) >0,

(iii) for each € > 0, as n—» 0, we have

L Bt (Ol 51100 > €0u v T, B} 0,

n

where
TnA,—1
ﬂ’nl(fﬂ) = % fn(Xn.’I):
. I=0
Crﬁ = EnA,, (7]1511 (fn))2
= 2{ fu(@) (Tufn) (%) ma(dzx)—f Jalex) maldx),
and

TnA,—1

(T'nfn) () =By ( EO fn(XM) )

Then, under (1) (of Theorem 1),

1 Na .
e B fn(X N(©,1) in distribution. v (2
On \/Nnﬂn(An) Jm=0 (X png) = N(0, 1) en distribution @)

3., ProOFSs OF THE RESULTS
Proof of Theorem 1.

N - 1 2Nn i
oA, = Emp(Ag) = B m El P(;)(Xnoa Ap).
Clearly,

| TaAs —Ta(An)| < Edn(p, Xno) for all p < 1.
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and so, it is enough to prove
7i5(An)—mpa,—> 0 in  probability.
Now, for any given ¢ > 0

P(|7aBn)— sl > 6) < 3 var (7,(Aw)

171 ¥ N, Nk
= a3 Vo 0 Eatgy & B ov (Ia,(Xat, TauKniti) ]
alm 5 -

2 Ny Np—k
= gg" m _sz DI E(P(h (Xﬂos A”)(P(.)(Am Aﬂ) P“+k)(Xn0: An»]

k=1 g=1

__ 1 er,
_éﬂN_,.+ po , B8Y.

It suffices to show that I',— 0.

mn
Let S,m(m) = rzl Pﬂz (Xﬂr = A")
Lot Tyfe) = s 3 PR, A,) (Suan (Fom )= Snalla) - S0s8)

_ 1 Fa SnAn(Nﬂ_k)
= I 20 a0 [( 250 )@, n

_ (Lﬁl’z)__ﬂ,.mn))zvﬁ( Susll) _rasn) )]
Thus, for 0 << p < 1,

I I“Il(x)l Nle b (12 )N P(ﬁ)(‘”’ An)(Nn_k)a‘n(p! x)

1 ¥y

3n(p, ®)Nn P
= b Ny—k)+ 202000 5 pE(g, A

+_ 2 k102w pwe Ak
Nik<oNa N kpon, "

< b, )24 g ,2 ) T
n je-pN,

& O, 0n(p, 2)+Cyp*,
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-where C, and C,; are constants and hence from (1)

lim sup-II‘,,l =0. O
n : .

For the proof of Theorem 2, we fieed the following three lemmata.

Lemma 1. Assume the hypotheses (@), (i5) of Theorem 2 and 0 << oy << 0.
Let TEp, be the k-th recurrent time to state A,. Then, for any initial disiri-
bution of X,

1 N,

— X ,.1)— 0 in probability as n— o0,
T L, I 0 in probability as

m
5-T”K"

Na
i

where mpy = I 15,(Xng) a8 in Theorem 1.
=0

Proof. Let P denote the probability with distribution of X, for a given
initial distribution of X,, Then, for any ¢ > 0, '

= fE

P {
TR,
N,..
=X P
r=0

¥ Tm,.-{-l .
. » nA, .
£ 2 P { S faEu) > e VN, A TR = N,.—rl

r=0 J=N, nT

= 60‘;‘ ‘\/N ﬂ"n(An) } |

¥,
Z X
J=Np—r

> eon VN, m,8,) Tya, =N ..—r}

Nﬂ
= Prsy Ifal) > 00 o/ N B} = P (T3, = No—1}
< P’"An {"ﬂl( lfﬂl ) > eoy, \/Nuﬂn(An)}

E(aa(]fal)

< &ruV/ N malBr)

— I lf nldVa
60".,"\/_N nﬂﬂ(dn)

—=0.



6 K. B. ATHREYA AND . b. FUH

Lemma 2. Let P be as in the proof of Lemma 1 above and let (1) hold.
Then, under hypothesis (ii) of Theorem 2 and 0 < 02 < o0, we have for any € > 0,

il

Proof. By Theorem 1, we have for any ¢ >> 0, there exists an integer
ny such that

My Nutn(Sg)

1
On A/ Nuttn(Ag) 12-:0 Ind (.fn)— 20 Tng(fn)

7=

>e)-—)0.

P{|mu—[Nnma(An)]| > Na} < € for all 7> ny.

Clearly, for such n,

d

< P{lmn.=[Nu.7"u(An)]| > N}

my NyFnldp)
Z mg(fa)— Z wsfa)
1=0 I=0

> 60y \/Nnﬂu(An))

+P{ max 5

= 60 g/ NpiTa(A
1r—[Namta(An)]l & €3Ny _ 2V Nnfa(An) }

Nns(fn)

’=lN”"”( An) H+1

——

A Tng(fn) \ > €0q A/ Nam,(An) } (by Theofem 1)

r

< e4-2P { max

1 r < 6N, | 4=
[N +1 2 i
28(7 2 qulfa)) - —
< €+ o (by Kolmogorov’s inequality)
1
= ¢}-2¢ *
T B -

< (Constan.t) €. (since lim inf '71,.(An) >0). [
n

Lemma 3. The variance o'f of nu(fn) is given by
o} = Enan(ny(fn))?
= 2 [ falx) (Tafa)@)onlde)— | fi(x)valda),

Tuan—1

where (infa)@) = Eng = falXp) ) -

J=0
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Proof. B,y (1u(fa))

TnAn,—1 2
=By, (X S
TnAy—1
=B, E SEDE)

TnAy—1 T'nAp—1 TnA,—1

~ B ( E X )4, B D X))

TnA,—1 2
:EnA,,( Z n(Xm))

2By (£ 100> 0 3 50 fiX) 1T, > )
TrAp,—1
:EnA,,( Eo ff(Xm))

12 3 By, [T, > ) (o Xni)

{=0
B 3 AT, > ) 5w ) |
where Fqy is the o-algebra generated by {Xn;;j < i}. But

Bya, [ ,Eﬂf"(x"’)I(TnA,. > | Fa)(Tyy, > 9) ]

= Bux, I SaZa Ty, > N 1T, > )

= (T'nfr) (Xnt)—fu (X)L (Tt > ).

Hence,

Enan(ny(fn))

TnA, -1
= BEnp, ( by ﬁ(XM))
i=0

2 £ Bus, UTnss > ) folE ] (T fo) XX (T, > ]

@ Tn a1
=2 5 Bas, [ (ITnse > ) s E T fo) En)—Bosa 3. fiEnd)
{=0 =0

= 2. fal@) (T'nfn) (@) va(d)— [ f(@) va(d2). O
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} N,
Proof of Theorem 2. We decompose (1/o,+/N, ms(Ay) 5 faX,) as
=0
follows :

N,

1 n
o VN B0) Eo Jo(Xng)
1 "z':u .J;‘,‘ X
AR ) (2 7o o+ o FulZ )
1 ¥y, )1
= VN Ry B WU @)
1 ™, Npma(dp)
T TV N1, (Ba) (Eo L Eo ﬂm(fn)) , Y
1 ¥
O a/ N 7 (Ag) Z n ni/- . ) aee
+ OuV N 7, (An) jt™ Jn(Xng) (5)
nA

By Lemma 1 and assumption (i), we have that (5)— 0 in probability, by
Lemma 2, we have that (4)— 0 in probability. Now, we need only to verify
that :

1 [Nﬂﬂ,n(dn)]
— pX
0',,\/[N a7 o(An)) j=0

() = N(0, 1) in distribution.

Lot . Mng (f n)

" ony/ [NamalBa)]

Then, we have for each n - |
(1) {Yng3j =1, ..., [NamalAn)]} ore i.id. random variables,
2) EYw=0,

[(Nnmra(a)]
® 8 pry = Bonla)f

— = 1 (by assumption (iii)).
t=1 .

2 =
Therefore, it is enough to show that {Y s} satisfies the Lindeberg condition.
That is, for any ﬁxe(_]_. ¢ > 0, we have ‘

s -:.M [N,‘ﬂ'n(A“)] ) . - - .
X B[YZLI(| Yus| > €)] 0 88 n— 0.
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But, the left side of the above equation is equal to

35 B 5 1naf)] > 0y VI, 7 ED
— 0 as n— oo (by assumption (iii)). O

4. SOME SUFFICIENT CONDITIONS FOR (1)

The assumption (1) of Theorem 1 relates the length of the observation
N, to the rate at which the n** chain approaches (in Césaro mean) its statio-
nary distribution. If P, converges to a P that is nice, then it is reasonable
to expect that this assumption holds.

Let X = {X;} be a Harris chain with state space (8, &) and transition
kernel P(.,.). Let X ={Xps;j=1,2,..., Ngq,n=1, 2,...} be a sequence
of Harris chains all with state space (S, 8), and transition kernel Pp(.,.). As

mentioned earlier, we assume without loss of generality that X,, X have
recurrent singletons,

Lemma 4. For pNy > L,

Bulp, ) <2 3 00,2, I)

where
A(n: z, L) = “P&L)(x, )_ﬂn()“

and ||.|| is the total variation norm.
Proof. By stationarity for my, we have for s > L
PW(z,)—m(.) = [ PY~2y, ) PP (x, dy)—§ P32y, .) m,(dy)
= [ (P{(x, dy)—mnn(dy))PE~ Dy, .).
which implis for » > L,

1Pz, An)—Ta(An)ll < IPEN (2, )—ma( ).
Thus,

d,(p, ) = mS;EN

| 5 PO )—mal)

L
< 2pN,, +An, z, L) O

This leads to the following sufficient condition for (1).
Al-2
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Condition I. lim lim sup EA(n, X gy, L) = 0.

L—axa nyo
Now

A(n, z, L)

< PP, )—PE (@, JI+IPP (@, )—a( W+ () —ma )]
Thus, anothr set of sufficient conditions for (1) is
Condstion II. (i) lim lim sup B|P{ (X g )—PP (X, ) =0,
Ty fi—po

(ii) Iirzljgp E\|PD (X g, )—7()]| = O,

(iii) lim [[7(.)—ma()] = .
F o X
Sufficient conditions for the above are given by
Condition IILI, (i) for all ¢ 8,|P,(z, .)—P(z, .)|=> 0 as n-» o0,
(ity) for all we S|P (x, )—m()|— O as L—» o0,
@95y fim()—m, (M= 0 as n—> oo,

(tv,) there exist a o finite measure x on (8, &) such that P(X p, ¢ dy)

= fa(y) #(dy), and there exist F e L,(x) such that for all =, |f, ()] < |/@)]
a.ep.

To see this, we first note that (¢) is implied by (i4,), (iv,) and the
Lebesgues dominated convergence theorem. Next we see that (i,) implies

P® (2, )— Pz, )
= [ Paly, .) Pale, dy)—[Ply, ) P(x, dy)
= [ Pu(y, .) (Pa(z, dy))— P(x, dy))+] (Paly, .)) Plx, dy).
1Pz, )— P, )
< I1Pae, )—P@, M+I1Paly, ) —P@), JIP (@, dy).

By bounded convergence theorem and (¢,), the rightside goes to 0 for each
ze 8. Similary,

|PE+D(, )—PE+D (g, )|
< IP® (2, )—P® (z, )|+ [Py, )—Ply, )P (z, dy).
and by induction, we get that 4, implies
(IP® (z, .)—P%® (x, .)]|— 0 for all ze § and for all &.
Now, (iv,) and dominated convergence theorem yields (1).

Finally, a fourth set of sufficient conditions for (1) is

and so,
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Condition IV. (3,) All X, and X have a common recurrent point A,

(5 lim limsup sup E’— E P (X pg, A)——E P@®(X,,A)| =0,
P30 e mz»pNa m

(i) lim limsup sup E_ z PO(X 0, A)—n(A)‘-—-O,
p=—30 n—o  mppN,

(fvg) | my(A)—m(A)| > O a8 m~> cO.

Clearly, we can replace (i3,) and, (iit,) by pointwise convergence (for each
Xy = z) and then impose (4v) fo Condition III.

REFERENCES
ATarevaA, K. B. and Nuy, P. (1978). A new approach to the limit theory of recurrent Markov
chains, Tran. Amer. Math. Soc., 245, 493-501,

Argreva, K, B, and Fug, C. D, (1989). Bootstrapping Markov ¢hains : Countable case, Techni-
cal Report : B-89-7, Institute of Statistical Beience, Academis Sinicia, Taipei, Taiwan,
ROC,

KULPERGER, R. J. and Prarasa Rao, B.L.8. (1989). Bootstrapping a finite state Markov chain.
Sankhya A, 51, 178-191,

NuMmMeELIN, E. (1984). General Irreducible Markov Chains and Non-Negative Operatora Cam-
bridge University Press, Cambridge,

DEPARTMENT OF MATHEMATICS AND STATISTIOS INSTITUTE OF STATISTICAL SCIENCE
TowaA STATE UNIVERSITY ACADEMIA SINICA
AwMEs, Iowa TarpEl, TAIWAN

U.8.A. REPUBLIC OF CHINA.



