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SUMMARY. Bayesian robustness has concentrated mainly on checking sensitivity of a

Bayesian analysis with respect to changes in the prior or the model. We deal here with several

issues concerning robust Bayesian analysis with respect to the loss function. Stemming from

foundational results, we suggest that a main computational objective would be the obtainment

of the set of nondominated alternatives. We then discuss a number of structure questions

concerning the nondominated set, mainly its existence and relation with the set of Bayes

alternatives and discuss procedures to compute the nondominated set. Since this set may be

too big to reach a final decision, we mention some problems concerning gathering additional

information.

1. Introduction

Our concern here is with Bayesian robustness, see Berger (1994), which stems
from an appreciation of the potential difficulties in assessing the inputs necessary
to conduct a Bayesian analysis and/or the need to check the impact of those
inputs on the conclusions of that analysis.

Previous work on robust Bayesian analysis has concentrated mainly on
inference problems. As a consequence, efforts have centered on studies of the
local and/or global behaviour of a predictive or posterior probability or expected
loss, when the prior and/or model varies in a certain class. Checking the influ-
ence of the loss function on the conclusions of an analysis is broadly recognised as
important, but not thoroughly studied, see various discussions following Berger
(1994). The main reason there suggested refers to the difficulty of assessing
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loss functions in applied settings, because of limited information or lack of time,
which would explain why statisticians have concentrated on using a fairly limited
set of stylised loss functions, including quadratic, absolute value or 0-1 loss
functions. In turn, the appropriate attitude in this case would be that since
loss functions are difficult to assess we should try to work with a class L of loss
functions.

Similar issues arise in related contexts. For example, Clyde and Chaloner
(1995) describe multiobjective design problems where each objective is associ-
ated with a utility function, studying the computation of nondominated designs.
Frequentists have also worried about the difficulties of obtaining loss functions
and, accordingly, worked with classes of them, with emphasis on the concept of
L-admissibility, as a minimal requirement for the acceptability of an estimator,
see Brown (1975) or Hwang (1985). A popular topic in economic analysis, see
Levy (1992), has been stochastic dominance, which refers to choice under risk
when the utility function belongs to a given class.

Recently, several authors have paid attention to loss robustness, see e.g.
Makov (1994) or Dey et al. (1995). Most work in the area has concentrated on
extensions of typical sensitivity to the prior studies to the case in which there is
imprecision in the loss function. For example, one could compute the range of
the posterior loss of an alternative, when the loss function ranges in a class. As
we shall argue in Section 2, these straightforward extensions demand some care.
On the other hand, by appealing to the foundations of robust Bayesian analysis,
we suggest a shift on the emphasis in Bayesian loss robustness computations:
various foundations, see e.g. Nau et al. (1997), suggest ordering alternatives in
a Pareto sense, according to a class of expected losses taken with respect to a
class of probability distributions and a class of loss functions. As a consequence,
robust Bayesian analysis should devote some effort to the problem of computing
nondominated alternatives.

In Section 3, we study a number of structural properties of the nondomi-
nated set, mainly its existence and relations with the set of Bayes alternatives.
We then study the computation of the nondominated set. We then discuss is-
sues concerning the size of the nondominated set and provide relations between
nondominated and L-minimax alternatives, ending up with comments.

2. Basic Notation and Concepts

We start within the standard decision theoretical framework, see e.g. Berger
(1985). We have to choose among a set A of alternatives a. We model uncer-
tainty about states θ ∈ Θ with a prior distribution P (θ), which, in the presence
of information x provided by an experiment with likelihood l(x|θ), is updated
to the posterior P (θ|x). When we choose alternative a and state θ happens, we
obtain a consequence c(a, θ) ∈ C, the space of consequences. In many statistical
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problems, it is assumed that c(a, θ) = a − θ. We evaluate consequences with a
loss function L(a, θ), and alternatives according to their posterior expected loss
T (L, a) =

∫
L(a, θ)dP (θ|x). We suggest as optimal the alternative of minimum

posterior expected loss, which we designate Bayes alternative (for loss function
L).

We shall depart from this framework assuming that we have a class L of loss
functions, instead of a single one. This could be due to our inability to model
exactly the preferences of a decision maker, e.g. because of limited information or
lack of time, a desire to check the impact of the loss function over the conclusions
of the analysis, or model consensus among several decision makers. We could
be tempted to extend standard robust Bayesian procedures to our setting in a
straightforward manner. For example, we could compute, for a given alternative,
the range of its expected loss when the loss ranges in the class. Large ranges
would suggest lack of robustness.

However, these extensions demand some care. Suppose for example that
the class of losses includes functions of the type L(a, θ) + k, for k ∈ [k0, k1],
which happens e.g. in the so called universal class, see Hwang (1985). Note
that all those loss functions are strategically equivalent, therefore leading to
the same optimal decision, hence having a robust problem. Should we insist
in computing the range of posterior expected losses, we would find it to be
greater than k1 − k0, which, if large, may suggest that we lack robustness. A
similar problem raises if we consider losses of the form kL(a, θ), when k ranges
in an interval. Related concerns refer to the debate decision robustness vs. loss
robustness, see Srinivasan and Kadane, in discussion to Berger (1994). If we
insist on using the range of the posterior expected loss as a sensitivity measure,
we should then be careful in defining the class of loss functions: in order to
avoid this problem, we could fix the loss of the worst consequence to be the
upper bound for all functions in the class, and the loss of the best one to be the
lower bound for all functions. However, with this condition, we could not use
typical loss functions like the quadratic or the absolute value.

One way forward in this problem is to go back to foundations of robust
Bayesian analysis, see e.g. Nau et al. (1997) or Rı́os Insua and Mart́ın (1994a).
We are specifically interested in problems in which preferences are modelled
with a class L of functions L and beliefs with a distribution P . Within this
incompleteness in preferences context, foundational results suggest that prefer-
ences among alternatives will follow a Pareto order with respect to the class of
expected losses. To wit, we shall find alternative b at most as preferred as alter-
native a if, and only if, the posterior expected loss of b is greater than or equal
to the posterior expected loss of a, for each loss function L in L. In symbols, we
shall write

b ¹ a ⇐⇒ T (L, a) ≤ T (L, b), ∀L ∈ L
When T (L, a) ≤ T (L, b), ∀L ∈ L, with strict inequality for one loss function
in the class, it will be b ¹ a and ¬(a ¹ b), and we shall write b ≺ a, saying
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that a dominates b. Clearly, we would discard alternative b from the analysis.
Therefore, the natural solution concept in this context is that of nondominated
alternative.

Definition 1. a ∈ A is nondominated if there is no other alternative b ∈ A
such that a ≺ b.

Note that the classical concept of admissibility is based as well on inequali-
ties between performance measures relative to alternatives; in our case, we use
posterior expected losses, for various loss functions, whereas in the case of ad-
missibility, we use the risk function, for various priors.

We believe that a computational question of interest in Bayesian loss robust-
ness analysis should be the calculation of the set of nondominated alternatives,
much as we are interested in the existence of a Bayes alternative in a conven-
tional Bayesian analysis or, more generally, optimal alternatives in an optimi-
sation problem. The computation of the nondominated set allows us to discard
definitely inferior alternatives, those that are dominated, hence reducing the set
of alternatives on which the Decision Maker should focus attention.

3. Nondominated Sets: Structural Properties

We discuss first some structural properties of the nondominated set, namely
its existence and relations with the set of Bayes alternatives.

3.1 Existence of nondominated alternatives. A first issue to consider is when
do nondominated alternatives exist. Simple examples show that this set may
be empty. Suppose e.g. that A = (0, 1] × (0, 1], with a generic alternative
defined by a = (a1, a2). Suppose also that L = {L1, L2}, with L1(a, θ) = a1 and
L2(a, θ) = a2, with a generic state space Θ. Then, whatever the prior and the
model are, which in fact are irrelevant in this case, for any alternative a there is
another alternative a′ such that a ≺ a′, so that the nondominated set is empty.

The following results show important statistical problems in which the non-
dominated set is nonempty. The first one refers to problems in which the set of
alternatives is finite, a relevant example being that of multiple hypothesis test-
ing, see e.g. Berger (1985). The proof follows immediately from the transitivity
of the dominance property.

Proposition 1. If the set A of alternatives is finite, the nondominated set
is not empty.

A more general result of similar proof is

Proposition 2. If for one loss function in the class L the set of Bayes
alternatives is nonempty and finite, then there exists, at least, one nondominated
alternative.
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By repeated application of Proposition 2 we may find a representative set of
nondominated alternatives. In some cases, the process ends in a finite number of
steps. An important case is that in which the class is finitely generated, that is
there is a set {L1, L2, ..., Ln} ⊂ L such that ∀L ∈ L, L =

∑n
i=1 wiLi,

∑
wi = 1,

wi ≥ 0. An example is that of multiobjective designs, in which we have several
loss functions and we find nondominated designs looking for designs which are
optimal for convex combinations of the original loss functions, see Clyde and
Chaloner (1996). We assume an appropriate topology for Proposition 3.

Proposition 3. If the set A of alternatives is compact and the class L is
generated by a finite number of loss functions continuous in A, uniformly with
respect to θ, then the nondominated set is not empty.

Proof. Let L1, ..., Ln be the loss functions generating L. Fix L1. Since L1

is continuous in A, uniformly in θ, T (L1, .) will also be continuous in A. To
wit, for each ε there is δ such that if |b − a| < δ, |L1(b, θ) − L1(a, θ)| < ε, ∀θ.
Then, |T (L1, a) − T (L1, b)| ≤

∫ |L1(b, θ) − L1(a, θ)|dπ(θ|x) ≤ ε. Since T (L1, .)
is continuous in A, which is compact, the corresponding set of minimisers, i.e.
the set B1 of Bayes actions, will be compact, as may be easily seen. If B1 is
finite the result follows immediately from Proposition 2, one of the alternatives
in B1 being nondominated. If not, we may find a compact set B2 ⊂ B1 that
minimises the expected loss under L2 in B1. If the set is finite then one of the
alternatives in B2 is nondominated. Otherwise, repeat with L3 the procedure,
eventually, reaching Bn, which will be a set of nondominated alternatives.

Similar results may be obtained, e.g. if L1(a, θ) is continuous in a for each
θ and the density of P (θ|x) with respect to the underlying measure is bounded
above.

3.2 Nondominated and Bayes alternatives. Recall that, from a foundational
point of view, in cases of imprecision in the loss function we should look for
nondominated alternatives. When there is precision in the loss, nondominated
and Bayes alternatives coincide, and we would like to relate them in general
cases. A simple case is that in which there is a unique alternative a which is
Bayes for all L ∈ L. Then it is the unique nondominated alternative.

The following example shows that the sets of nondominated and Bayes al-
ternatives can be different.

Example 1. Let

A =
{

(1, x), x ∈
(

1
2
, 1

)}
∪

{
(x, 0), x ∈

(
0,

1
2

)}
∪

{(
3
4
,
1
4

)}
,

and L = {L1, L2}, with L1(a, θ) = −a1 and L2(a, θ) = a2. Then, (3/4, 1/4) is the
unique nondominated alternative. The Bayes alternatives for L1 are {(1, x), x ∈
(1/2, 1)}. The Bayes alternatives for L2 are {(x, 0), x ∈ (0, 1/2)}.
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An important result relating the sets of Bayes and nondominated alternatives
is given by the following corollary of Proposition 1.

Corollary 1. If any loss function in the class L has a unique Bayes alter-
native, then the set of Bayes alternatives is contained in the set of nondominated
ones.

We will see later (Proposition 7) that the two sets coincide for a quite large
class of loss functions. Note, though, that both sets can be different even if there
is a unique Bayes solution for each loss function in the class.

Example 2. Let A = {(a1, a2) : a2
1 + a2

2 ≥ 1, 0 ≤ a1, a2 ≤ 1}. Suppose also
that L = {L1, L2}, with L1(a, θ) = a1 and L2(a, θ) = a2, with a generic state
space Θ. Then, whatever the prior and the model are, the set of nondominated
alternatives is A = {(a1, a2) : a2

1 + a2
2 = 1, 0 ≤ a1, a2 ≤ 1}, whereas (1, 0) is

Bayes for L1 and (0, 1) is Bayes for L2.

Under appropriate conditions both concepts are intimately related. For ex-
ample, following Proposition 2, if the set of Bayes alternatives is finite for a loss
function, one of those alternatives is nondominated. As a consequence of Corol-
lary 1, if there is a unique Bayes alternative for L ∈ L, then it is nondominated.

Reciprocal results are not true. For example, let

A =
{

(1, x), x ∈
(

1
2
, 1

)}
∪

{
(x, 0), x ∈

(
0,

1
2

)}
∪

{(
3
4
,
1
4

)}
,

If L = {L1, L2} with L1(a, θ) = a1 and L2 = −a2, then (3/4, 1/4) is the unique
nondominated alternative and there is no Bayes one.

Under conditions similar to those of Proposition 3, and with basically the
same proof, we have

Proposition 4. Suppose L is generated by a finite number of continuous,
uniformly in θ, loss functions in A, which is a compact set. Then, for any Li

there is one nondominated alternative that is Bayes for Li.

The provision of more general results, either concerning existence of nondom-
inated alternatives or the relation between nondominated and Bayes alternatives,
requires the adoption of abstract topological conditions much as it is done in mul-
tiobjective optimisation, see e.g. Yu (1986). However, it turns out to be much
more interesting to consider specific statistical examples, as we illustrate in the
next subsection.

3.3 An example: Set estimation. We consider set estimation under the loss
function

Ls(θ, C) = s(vol(C))− I(θ ∈ C),

where C is a subset, s is an increasing function and I(·) is the indicator function.
Casella, Hwang and Robert (1994) studied admissibility of estimators under such
loss functions.
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For simplicity, we shall assume that P (θ|x) gives positive measure to any set
with positive Lebesgue measure. We shall assume also that the density function
p(θ|x), corresponding to P (θ|x), is not constant on any subset with positive
Lebesgue measure. This allows for the existence of HPD subsets, {θ : p(θ|x) ≥
k}, k > 0, with any arbitrary volume. It can be easily shown that the expected
loss of an alternative C is given by

∫

Θ

L(θ, C)dP (θ|x) = s(vol(C))− P (C|x).

We shall consider a class L of loss functions Ls depending on s, L = {Ls :
sL(t) ≤ s(t) ≤ sU (t), ∀t}, where sL and sU are given increasing functions. In
such case, we have:

Proposition 5. The nondominated alternatives are necessarily HPD sets.

Proof. Suppose there exists a nondominated alternative B which is not
a HPD set. Let A be a HPD set with the same volume as B; such A ex-
ists because of the previous assumptions on the density p(θ|x). There exist
two subsets I ⊆ B ∩ AC and E ⊆ A ∩ BC , with the same volume such that
inf
θ∈E

P (θ|x) > sup
θ∈I

P (θ|x). Therefore, it follows that P (A|x) > P (B|x). More-

over, for every Ls ∈ L, or equivalently, for every s satisfying the constraints,

s(vol(A))− P (A|x)− (s(vol(B))− P (B|x)) = P (B|x)− P (A|x) < 0

so that B is dominated by A.
It is not true, however, that any HPD set is a nondominated alternative, as
shown in the following example.

Example 3. Let P (θ|x) be a Beta distribution B(2, 1), with density P (θ|x) =
2θ, corresponding, e.g., to a Bernoulli model under a uniform prior. The intervals
Ay = [y, 1] are the HPD sets with P (Ay|x) = 1 − y2 and volume 1 − y. The
corresponding expected loss is s(1− y)− 1 + y2.

Consider the class L of all loss functions Ls with s(t) within the band defined
by the functions sL(t) = t2 and sU (t) = t. We will show that the HPD sets Ay,

with y >
1 +

√
1/2

2
, are dominated by A1/2. In fact, for every s such that

sL ≤ s ≤ sU , we have
∫

Θ

Ls(θ, A1/2)dP (θ|x)−
∫

Θ

Ls(θ,Ax)dP (θ|x) = −1/4 + 2y − 2y2,

which is negative for those y’s.
Finally, we can see that nondominated alternatives are not always Bayes.

Example 4. Consider L = {L1, L2}, where the losses L1 and L2 correspond
to the size function s1(t) = t3 and s2(t) = t, respectively. The Bayes alternatives
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are the HPD sets Ay with y equal to y1 = (4−√7)/3 and y2 = 1/2, respectively.
It can be easily shown that any HPD set Ay, with y ∈ (y1, y2) is a nondominated
alternative, despite not being a Bayes one.

4. Nondominated Set: Computations

We turn now to the issue of computing the nondominated set. We shall
study an important case in which computations may be performed exactly. In
most cases, however, we shall have to turn to procedures to approximate the
nondominated set. For that reason a scheme is provided in Martin et al. (1997),
which requires procedures to check dominance between alternatives.

The case of interest is that of bands of convex loss functions. Let λ(t) be a
function on IR which is positive (negative, null) if and only if t > 0 (t < 0, t = 0,
respectively). The function Λ(a, θ) =

∫ θ−a

0
λ(t)dt defines a loss function such

that Λ(a, θ) = Λ(θ−a) and Λ
′
(t) = λ(t), for all real t. Note that widely used loss

functions may be obtained for appropriate choices of λ functions: for example,
the squared error loss Λ(a, θ) = (θ−a)2 is given by λ(t) = 2t; the absolute error
loss, Λ(a, θ) = |θ − a| is obtained for λ(t) = t/|t| (with λ(0) = 0); the LINEX
loss function, see Varian (1974), Λ(a, θ) = eγ(a−θ) − γ(a− θ)− 1 is obtained for
λ(t) = γ(1 − e−γt). Note also that symmetric loss functions can be obtained
if λ(−t) = −λ(t) for all real t. Moreover, we can obtain a strictly convex loss
function by considering λ(t) such that λ

′
(t) > 0 for all real t 6= 0. Hence, we

have an extremely flexible definition of a loss function.
Given λ, we may perturb it by changing the values of λ(t) in some intervals.

Among possible changes of λ, we shall consider those within a band. Consider
two functions v(t) and u(t) defined on IR which are positive (negative, null) if
and only if t > 0 (t < 0, t = 0) and such that v(t) ≤ u(t), ∀t ∈ IR. Let V and U
be their associated loss functions. We will consider the class

L = {Λ : v(t) ≤ λ(t) ≤ u(t), ∀t ∈ IR},
and call it band of convex loss functions class. We shall compute the set of
nondominated alternatives for that class with A = Θ = IR. We provide first
some preliminary results.

Proposition 6.

sup
Λ∈L

(T (Λ, a)− T (Λ, b)) =
{

T (U, a)− T (U, b) a < b
T (V, a)− T (V, b) a > b

Proof. Let F (θ|x) be the distribution function corresponding to P (θ|x).
The result follows from

∫

IR
Λ(a, θ)dP (θ|x)−

∫

IR
Λ(b, θ)dP (θ|x) =

∫

IR

{∫ θ−a

θ−b

λ(t)dt

}
dP (θ|x)
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=
∫

IR
{F (b + t|x)− F (a + t|x)}λ(t)dt

and F (b+t|x)−F (a+t|x) being either nonnegative or nonpositive for all real t.

Let aV and aU be the (not necessarily unique) Bayes alternatives under losses
V and U , respectively.

Lemma 1. Let P (θ|x) be such that P (A|x) > 0 for all measurable subsets
A with non-null Lebesgue measure. Suppose v(t) ≤ u(t) for any real t, with
v(t) < u(t) on some interval I. It follows that aV ≤ aU .

Proof. We prove the result by contradiction. Suppose there exist two Bayes
alternatives aV and aU such that aV > aU . As the alternatives are Bayes, it
follows that∫

IR
[V (aV , θ)− V (aU , θ)]dP (θ|x) ≤ 0 and

∫

IR
[U(aV , θ)− U(aU , θ)]dP (θ|x) ≥ 0.

Such conditions are equivalent to
∫

IR

{∫ θ−aV

θ−aU

v(t)dt

}
dP (θ|x) ≤ 0 and

∫

IR

{∫ θ−aV

θ−aU

u(t)dt

}
dP (θ|x) ≥ 0.

Combining both conditions, we have
∫

IR

{∫ θ−aV

θ−aU

[u(t)− v(t)]dt

}
dP (θ|x) ≥ 0. . . . (1)

Since u(t)− v(t) is nonnegative for any real t and strictly positive on an interval
I (possibly IR), and θ − aU > θ − aV for all θ, the inner integral in (1) is
strictly negative for all θ such that I ∩ [θ − aV , θ − aU ] 6= ∅. Such θ’s belong
to a measurable set A, with P (A|x) > 0, therefore the integral in (1) is strictly
negative, contradicting the assumption aV > aU .

For Proposition 7, we assume that V and U are strictly convex loss functions
so that there exists a unique Bayes alternative for each of them. This result is
relevant since it shows that Bayes and nondominated alternatives coincide for a
quite large class of loss functions.

Proposition 7. Let aV and aU be the Bayes alternatives corresponding
to losses V and U obtained, respectively, from v and u. Suppose v

′
(t) > 0

and u
′
(t) > 0 for all real t 6= 0. The interval [aV , aU ] is the set of all Bayes

alternatives, which coincides with the set of nondominated alternatives.

Proof. Any alternative a < aV is dominated by aV since, for any Λ ∈ L, it
holds that

∫

IR
Λ(a, θ)dP (θ|x)−

∫

IR
Λ(aV , θ)dP (θ|x) =

∫

IR

{∫ θ−a

θ−aV

λ(t)dt

}
dP (θ|x)
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≥
∫

IR

{∫ θ−a

θ−aV

v(t)dt

}
dP (θ|x) =

∫

IR
V (a, θ)dP (θ|x)−

∫

IR
V (aV , θ)dP (θ|x) > 0.

Similarly, any alternative a > aU is dominated by aU , so that the set of non-
dominated alternatives is contained in [aV , aU ].

Because of Lemma 1, the set of Bayes alternatives is contained in [aV , aU ].
Consider the function λε(t) = (1−ε)v(t)+εu(t), ε ∈ [0, 1], and the corresponding
loss function Λε ∈ L. It is easy to see that the Bayes alternative aε is unique
and aε is a nondecreasing function of ε, again as a consequence of Lemma 1.

Suppose there exists ε̃ ∈ (0, 1) and ã such that lim
ε→ε̃−

aε < ã < aε̃. Because of

the continuity of Λε(a, θ) in both ε and a, it follows that there is η > 0 such that
aε̃−η < ã and

∫

IR
Λε̃(aε̃, θ)dP (θ|x) <

∫

IR
Λε̃(aε̃−η, θ)dP (θ|x)

=⇒
∫

IR
Λε̃(ã, θ)dP (θ|x) <

∫

IR
Λε̃(aε̃−η, θ)dP (θ|x)

=⇒
∫

IR
Λε̃−η(ã, θ)dP (θ|x) <

∫

IR
Λε̃−η(aε̃−η, θ)dP (θ|x),

which is impossible. Therefore, aε is a continuous function of ε and any alterna-
tive in [aL, aU ] is Bayes and nondominated, because of Proposition 2.

Example 5. Suppose that P (θ|x) is N (0, 1), and L is given by

v(t) =
{

3t t < 0
t t ≥ 0

and

u(t) =
{

t t < 0
3t t ≥ 0

Such a class contains the squared error loss (for λ(t) = 2t). Besides, V (t)
and U(t) are the loss functions in L which penalises the most, respectively,
the negative and the positive values of t. It can be shown that the interval
[−.3989, .3989] is the set of nondominated (and Bayes) alternatives. 4

In most cases, however, we shall not be able to compute exactly the non-
dominated set, and we shall need a scheme to approximate it. One such scheme
may be seen in Riós Insua and Martin (1994b).

5. The Size of the Nondominated Set

In some cases, nondominance is a very powerful concept leading to a unique
nondominated alternative. Here is a non-trivial case. Suppose that P (θ|x) is
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a symmetric, unimodal distribution such that P (A|x) > 0 for any measurable
subset A. Without loss of generality, assume that the mode is 0. Let L be the
class of all convex, symmetric loss functions which are not constant in a subset
with positive posterior probability.

Proposition 8. Given P and L as above, the mode 0 is the Bayes alternative
for any L ∈ L and the unique nondominated alternative.

Proof. For any a ∈ Θ and for any L ∈ L, it follows that∫

IR
[L(0, θ)− L(a, θ)]dP (θ|x)

=
∫ ∞

0

[L(θ)− L(θ − a)]dP (θ|x) +
∫ ∞

0

[L(−θ)− L(−θ − a)]dP (−θ|x)

=
∫ ∞

0

[2L(θ)− L(θ − a)− L(θ + a)]dP (θ|x)

< 0,

the inequality following from the convexity of L, which is nonconstant on a
subset with positive probability. The result follows immediately.

However, in most cases the nondominated set will be too big to reach a final
decision. Note that as a byproduct of the procedures to compute or approxi-
mate the nondominated set, we obtain estimates on the differences in posterior
expected losses among nondominated alternatives. If these were not large, we
would conclude that these perform not too differently in terms of their posterior
expected loss and, basically, we would not loose too much by recommending any
of those alternatives.

One possibility would be to elicit additional information from the decision
maker and further constrain the class. Clearly, in this case the set of nondomi-
nated alternatives will be smaller and we could hope that this iterative process
would converge until the nondominated set is small enough to reach a final deci-
sion. Martin and Riós Insua (1997) provide ideas for aiding in eliciting additional
information when robustness lacks.

Alternatively, it is conceivable that we might not be able to elicit additional
information. In such cases, see e.g. Makov (1994), we might appeal to ad
hoc concepts like L-minimax alternatives, as a way to pick a nondominated
alternative, as we show in the following result. Recall that aM ∈ A would be
L-minimax if maxL∈L T (L, aM ) = mina∈AmaxL∈L T (L, a).

Proposition 9. If the set of L-minimax alternatives is finite, one of them
is nondominated.

Suppose that a is L-minimax and dominated by another alternative a′. It
is easy to see that a′ is also L-minimax. The result follows because the set is
finite.
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As a corollary, if there is a unique L-minimax alternative, it is nondominated.
Similar results may be obtained, for other ad hoc concepts like L-minimax regret
alternatives.

6. Discussions

We have described the case in which imprecision in preferences is modelled
with a class of loss functions. Rather than undertaking a straightforward exten-
sion of robust Bayesian analysis and analysing the local or global behaviour of a
posterior or predictive expectation, we have gone back to foundations of robust
Bayesian analysis and concluded that a main computational issue in this field
should be the computation of the nondominated set.

We have explored several questions in that direction, mainly existence of non-
dominated alternatives, relations between Bayes and nondominated alternatives,
relations between L-minimax and nondominated alternatives, and provided ways
to compute the nondominated set.

There are many other classes of loss functions for which the results here stated
should be computed, and we view this paper as a first one in that direction. Some
of the classes will be parallel to those used in sensitivity to the prior studies,
see Berger (1994). Lindley (1976) introduces other important classes. Finally,
another source of classes of loss functions is the stochastic dominance literature,
see Levy (1992) for a review, which concentrates mainly on loss functions whose
derivatives of increasing order alternate in sign. Martin et al (1997) provide
additional ideas.
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Ŕıos Insua, D. and Mart́ın, J. (1994a), On the foundations of robust decision making. In
Decision Theory and Decision Analysis: Trends and Challenges, (Rı́os, S. ed.), Kluwer
A. P., Amsterdam.
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