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SUMMARY. A statistical model developed from scientific theory may “fail to fit” the

available data if the scientific theory is incorrect or if the sample size is too small. The former

point is obvious but the latter is more subtle. In the latter case, the hypothesized model may

fail to fit in the sense that it is viewed as unnecessarily complicated, and so the investigators

settle upon a simpler model that ignores structure hypothesized by scientific theory. We

describe a simulation-based approach for determining the sample size that would be required

for distinguishing between the simpler model and the hypothesized model assuming the latter

is correct. Data are simulated assuming the hypothesized model is correct and compared to

posterior predictive replications of the data, which are drawn assuming the simpler model is

correct. This is repeated for a number of sample sizes. The Bayesian approach offers two

especially nice features for addressing a problem of this type: first, we can average over a

variety of plausible values for the parameters of the hypothesized model rather than fixing a

single alternative; second, the approach does not require that we restrict attention to a limited

class of regular models (e.g., t-tests or linear models). The posterior predictive approach

to sample size determination is illustrated using an application of finite mixture models to

psychological data.

1. Introduction

Consider a situation in which scientific theory suggests a probability model
specifying the interrelationships among a number of random variables, but the
complexity of that model is not supported by the available data. In that case, a
simpler model that describes the existing data would likely be considered
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adequate. We denote the simpler model by Mo and the hypothesized model by
Mh; there is no assumption that the models are nested (i.e., we do not assume
that Mo can be obtained from Mh by fixing certain parameters). Two plausible
explanations for the data’s support of Mo are that either the proposed model
Mh is invalid, or the size (structure) of the existing data set is insufficient for
discerning the aspects of Mh that Mo is lacking. The main emphasis in this
paper is on determining the sample size needed in a future study to provide a
reasonable probability of detecting the weaknesses of Mo with respect to the
science reflected in Mh.

Our basic approach is to propose a sample size for this future study and gen-
erate many data sets of this size under the hypothesized model (using a proper
prior distribution to sample plausible parameter values and the hypothesized
data model to sample data values). The simpler model is fit to each simulated
data set, and the need to add more scientifically-motivated structure is then
assessed. By repeating this process with a variety of sample sizes, we can deter-
mine the minimum sample size needed to be confident that the simpler model
will be found lacking, assuming the hypothesized model provides a better de-
scription of the phenomenon being studied. The fit of a statistical model to data
can be assessed in a variety of ways. The main tools used here are posterior pre-
dictive distributions of discrepancies selected to diagnose particular failures of
the model (Rubin, 1984; Gelman et al., 1996).

The simulation-based approach requires that statistical models be fit to a
large number of simulated data sets; since each fitting of a model to a simulated
data set may require Markov chain Monte Carlo methods, the computational
work required to determine a suitable sample size can be quite demanding. Of
course, it is expensive to carry out a study, and careful planning can provide
substantial benefits and eventual savings.

In Section 2 we review the posterior predictive approach to model assessment
and describe our approach for determining sample size using posterior predictive
distributions. In addition, we briefly describe several extensions and modifica-
tions of the procedure, including the changes that are required to accommodate
alternative model assessment approaches such as Bayes factors. Section 3 applies
our approach to an example involving the use of finite mixture models in psy-
chology. Research concerning infant temperaments hypothesized a latent class
model with four classes but a two-class model provided an adequate fit based on
a study of 93 infants (Stern et al., 1994, 1995; Rubin and Stern, 1994). Section
4 includes additional discussion concerning the relationship of this approach to
traditional power analyses, and Section 5 provides final remarks.

2. Sample size determination

2.1 Posterior predictive model assessment. Because posterior predictive model
assessment (Rubin 1984, Gelman et al. 1996) plays a crucial role in this ap-
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proach to determining sample size, it is reviewed briefly here. Suppose that
we have fit a model Mo with parameters θo to data yobs. Covariates, if any,
are considered fixed and do not appear explicitly in the notation. Inferences
concerning the parameters of the model are based on the posterior distribution,
p(θo|yobs, Mo) ∝ p(yobs|θo, Mo) p(θo|Mo). We make no assumptions about the
prior distribution p(θo|Mo) other than it leads to a proper posterior distribu-
tion; thus we allow for the possible use of improper prior distributions on θo.
Let yrep denote a hypothetical replication of the current data set, yobs, i.e., a
new sample generated by the probability model Mo using parameter values θo

drawn from the posterior distribution of the parameters. The posterior distri-
bution is used so that diagnostic effort is focussed on values of θo that are most
plausible given the data yobs. Formally, yobs and yrep are assumed to be inde-
pendent and identically distributed under Mo given θo. In contrast, Box (1980)
defines hypothetical replications using the prior distribution of θo which might
be called prior predictive replications in our terminology. The relevant reference
distribution for our definition of yrep is its posterior predictive distribution,

p(yrep|Mo, yobs) =
∫

p(yrep|θo,Mo, yobs) p(θo|Mo, yobs) dθo

=
∫

p(yrep|θo,Mo) p(θo|Mo, yobs) dθo,

which averages the sampling distribution of yrep over the posterior distribution
of the model parameters, θo, assuming Mo is true. Under Mo, the replications
differ from the observed data due only to the variation inherent in the sampling
distribution of the data given θo and the posterior uncertainty about the values
of the parameters θo.

Let T (y; θ) be a discrepancy assessing the degree to which some model with
parameters θ fails to fit data y. The model does not appear explicitly in this
notation. Ordinarily T is chosen to measure discordance of the data and model
with respect to specific structure that it is thought may be present in reality but
not in the model under consideration. Model assessment typically uses several
different discrepancy measures to consider different aspects of the model. For
example, we might choose a vector T to be the sufficient statistics of a more
complex model than the one we are fitting. In the mixture model example of
Section 3, we focus on a scalar T that is an overall measure of fit instead of using
discrepancy measures sensitive to individual model features; the overall measure
appears to be adequate for detecting misspecification of the number of classes
in the model. Note that T is allowed to depend on the unknown parameters of
the model and is thus not restricted to be a test statistic. We assess the fit of
our model by comparing the posterior distribution of T (yobs; θo) to the posterior
predictive distribution of T (yrep; θo). In some cases these distributions can be
obtained analytically, but in general practice we typically rely on simulation to
compare the distributions, especially with complex models.
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The use of simulation is especially natural when Markov chain Monte Carlo
(MCMC) is used to obtain draws from the posterior distribution, p(θo|yobs,Mo).
Let θ

(k)
o , k = 1, . . . , K represent a sample from the posterior distribution. Then

we can draw a single replication, yrep(k), from the data model, p(y|Mo, θ
(k)
o ), for

each posterior draw. The K draws from the posterior distribution of T (yobs; θ
(k)
o )

and the K draws from the posterior predictive distribution of T (yrep(k); θ(k)
o ) can

be displayed in a scatterplot of (T (yobs; θ
(k)
o ), T (yrep(k); θ(k)

o )), k = 1, . . . ,K. The
tail-area probability,

PT (yobs,Mo) ≡ Pr(T (yrep; θo) ≥ T (yobs; θo) | yobs,Mo), . . . (1)

is one summary of the model assessment with extremely large or small values
indicating that the observed data is not similar to the data sets that would be
expected under Mo with respect to the discrepancy measure T . This probability
can be estimated using the proportion of the K simulated (yrep(k), θ

(k)
o ) pairs

for which the event, T (yrep(k); θ(k)
o ) ≥ T (yobs; θ

(k)
o ), occurs. If T is a traditional

test statistic (i.e., it does not depend on θo), then the observed value T (yobs) is
compared to the K simulated draws from the posterior predictive distribution,
T (yrep(k)), k = 1, . . . , K.

2.2 Technique for determining sample size. Let Mh denote a model hypoth-
esized to be true based on scientific theory, and let θh denote the parameters
of the model. We use p(y|θh,Mh) to represent the probability distribution for
y implied by the model and p(θh|Mh) to represent the prior distribution for its
parameters. The prior distribution must be a proper distribution since we will
simulate from it as part of our approach. Suppose that we currently believe a
simpler model Mo with parameters θo is adequate. Recall that the prior distri-
bution on θo is not required to be a proper distribution because our draws of θo

will always be from its posterior distribution. Although we assume that Mo is a
“smaller” or less complex model than Mh, there is no requirement that θo be a
function of θh. The preference for the simpler model Mo can arise, as it did in
the mixture model example of the next section, when the posterior distribution
of Mh given observed data yobs is characterized by a great deal of uncertainty
(perhaps including a large number of comparable modes), whereas the posterior
distribution of Mo is well defined and appears to provide an adequate fit to the
data. In this situation it is natural to ask whether a larger sample might find Mo

invalid and favor the more sophisticated model Mh. The existence of observed
data yobs is not required; the study design question may be motivated without
such data.

We now describe a general simulation-based approach for determining the
sample size required to ascertain whether our preference for Mo indicates a
failure of the scientific theory or not. We use N to denote the sample size under
consideration. Data sets y of size N are simulated from the marginal distribution
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of y under the scientifically motivated model Mh,

p(y|Mh) =
∫

p(y|θh,Mh) p(θh|Mh) dθh.

For each simulated data set, we fit the simpler model Mo and carry out an
assessment of the fit of Mo using the posterior predictive approach of Section
2.1. Specifically, we generate posterior draws from p(θo|y, Mo) and posterior
predictive draws from p(yrep|y,Mo). In this context the replicate data refers to
a replication of the simulated data y. The fit of the model Mo is then assessed
using discrepancy T (y; θ). The entire model fitting and model assessment process
is repeated for a number of simulated data sets of size N . To assess how well
the simple model Mo fits according to T when data sets of size N are simulated
under Mh, we define the tail-area probability

QT (N, Mo,Mh) ≡
∫

PT (y, Mo) p(y|Mh) dy, . . . (2)

where PT (y,Mo) is the tail-area probability (1) that results when discrepancy
measure T is used with data y to evaluate model Mo. The tail-area QT (N, Mo,Mh)
measures the likelihood that T (yrep; θo) ≥ T (y; θo) for data sets of size N gen-
erated under the model Mh. The expression (2) makes it clear that Q is a
weighted average of model assessment tail-areas over data sets a priori thought
likely to occur under Mh. Note that (2) is actually an integral that averages over
(θh, y, θo, y

rep), with the integration over θh implicit in the definition of p(y|Mh)
and the integrations over (θo, y

rep) implicit in the definition of PT (y, Mo).
In practice QT (N, Mo, Mh) is estimated via simulation. For each set of sim-

ulated data, y, we may evaluate PT (y, Mo) to any desired precision by drawing
as needed from the posterior predictive distribution of yrep given y under model
Mo. Thus, we may choose a large number of posterior predictive draws for each
simulated data set, or we may choose a small (perhaps only one) draw from the
posterior predictive distribution of each simulated data set. We have used a sin-
gle draw from each simulated data set because we are not interested in detailed
information about PT (y,Mo) for any one data set. In addition, this allows us
to ignore the correlation among the posterior predictive draws generated via a
single Markov chain Monte Carlo analysis (although this could be addressed).

The technique we use to evaluate the efficacy of a particular sample size N
is described fully by the following steps.

1. Fix a sample size N and a proper prior distribution on the parameters of
the hypothesized model, p(θh|Mh).

2. For k = 1, . . . , K:

(a) Simulate θh from its prior distribution.

(b) Simulate data y(k) (sample size N) from the hypothesized model Mh with
parameters θh drawn in (a).



166 donald b. rubin and hal s. stern

(c) Obtain a single draw from the posterior distribution of the null model’s
(Mo) parameters, p(θo|y(k),Mo).

(d) Obtain a posterior predictive draw of yrep(k) using the drawn value of θo.

3. Compare the distributions of T (yrep(k); θo) and T (y(k); θo), perhaps by
estimating the tail-area probability QT (N, Mo,Mh).

Steps (2.c) and (2.d) can be replaced by multiple draws as discussed at the
end of the previous paragraph. Some practical issues related to the implemen-
tation of this technique (e.g., selection of prior distributions) are found in the
discussion of the example in Section 3. For now we restrict attention to a single
important computational issue.

As has been mentioned earlier, it will often be the case the draws from the
posterior distribution in step (2.c) will be obtained using MCMC. This raises
the issue of how convergence of the MCMC algorithm can be judged since each
iteration of step 2 requires analysis of a new data set. In our examples, we
used the initial analysis (whereby sample data were used to choose the model
Mo) to determine an approximate burn-in period beyond which draws are likely
to represent the desired posterior distribution and used that burn-in period
throughout. The multiple sequence approach of Gelman and Rubin (1992) was
used to assess convergence in the initial analysis. Of course, when the prior
distribution on θh is vague, then the simulated data sets may vary enough to
require additional work on diagnosing convergence of the MCMC algorithms.

2.3 Sample size determination and Bayes factors. The use of posterior predic-
tive model checks has been emphasized in our approach to determining sample
size. The posterior predictive approach focuses on the current best fitting model
and asks what sample size would be needed to cast doubts on its validity. Given
the focus on two models (Mo and Mh) it may seem natural to ask what sample
size would be needed to produce a reasonable expectation that the Bayes factor
would favor Mh. The Bayes factor treats the two models symmetrically when
choosing between them (Kass and Raftery, 1995). In fact, this requires only a
minor modification of the technique described in the previous section. Given a
simulated data set from Mh, we would evaluate the Bayes factor comparing Mh

and Mo for the given data set (this would replace steps (2.c) and (2.d)). Each
simulated data set would lead to a single Bayes factor and step 3 would examine
the distribution of Bayes factors obtained from the simulated data sets of a given
size. The tail area formula (2) would not be relevant. The prior distribution for
θo would be required to be a proper distribution in order for the Bayes factor to
be defined, which is one potential disadvantage of using Bayes factors for model
selection. A more important issue is that Bayes factors address the relative fit of
two models without addressing how well either actually fits the data. Posterior
predictive model checks focus on the latter question by allowing the discrepancy
T (y; θ) to be general and not necessarily determined by the models Mo and Mh.
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Table 1. data from infant temperament study includes 93 infants
in a 4× 3× 3 contingency table.

Motor Number of observations
activity Cry in fear category Row

category, M category, C F = 1 F = 2 F = 3 total
1 1 5 4 1 10
1 2 0 1 2 3
1 3 2 0 2 4
2 1 15 4 2 21
2 2 2 3 1 6
2 3 4 4 2 10
3 1 3 3 4 10
3 2 0 2 3 5
3 3 1 1 7 9
4 1 2 1 2 5
4 2 0 1 3 4
4 3 0 3 3 6

3. Application to psychology example

3.1 A finite mixture model for infant temperament data. There has been
some debate among developmental scholars in psychology about whether tem-
peramental qualities of infants and children (irritability, activity level) should
be conceptualized as continua or as categories. Most statistical analyses assume
the former; the authors were involved in a study designed to explore appropriate
statistical analyses assuming the categorical view is correct (Stern et al.; 1994,
1995). The data are measurements of 93 infants during test batteries of sensory
stimuli at age 4 months and age 14 months. A number of measurements were
made but these were reduced for purposes of analysis to 3 categorical variables,
motor activity (M) at 4 months of age (four levels), crying (C) at 4 months of
age (three levels), and fearfulness (F ) at 14 months of age (three levels), defin-
ing the 4× 3× 3 contingency table shown in Table 1. It is evident in the table
that the three variables are not independent. Infants who exhibited low levels of
both motor activity and irritability at four months had significantly fewer fears
at 14 months than the infants who exhibited high levels of motor activity and
irritability.

Studies of humans and other mammalian species suggest possible biological
mechanisms under which qualitatively different groups of infants would be ex-
pected. Stern et al. (1995) provide some discussion and references to the related
science, which essentially suggests that four distinct subpopulations exist. Stern
et al. applied a finite mixture model (e.g., see Everitt and Hand, 1981; Tittering-
ton, Smith, and Makov, 1985) to analyze these data. Let nijk denote the number
of infants with M = i, C = j, F = k, and let πijk represent the probability that
an infant is in that cell of the contingency table. In addition we imagine that
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there is a latent or unobserved variable with S categories with the proportion of
infants in the s-th class denoted by πs and we let πijk|s denote the distribution
of (M, C,F ) in the s-th class. Under this model, the joint distribution of the
three observed random variables is a mixture of the joint distributions within
the classes, πijk =

∑S
s=1 πsπijk|s. In this particular case, it is assumed that the

three random variables (M, C, F ) are conditionally independent given the class
to which an infant belongs so that πijk =

∑S
s=1 πsπi|sπj|sπk|s.

Table 2. maximum likelihood parameter
estimates for two-class model fit
to the infant temperament data.

Class
Parameter s = 1 s = 2
πs = Pr(s) .50 .50

πi=1|s = Pr(M = 1|s) .22 .14
πi=2|s = Pr(M = 2|s) .60 .19
πi=3|s = Pr(M = 3|s) .12 .40
πi=4|s = Pr(M = 4|s) .06 .27

πj=1|s = Pr(C = 1|s) .71 .28
πj=2|s = Pr(C = 2|s) .08 .31
πj=3|s = Pr(C = 3|s) .21 .41

πk=1|s = Pr(F = 1|s) .74 .00
πk=2|s = Pr(F = 2|s) .26 .32
πk=3|s = Pr(F = 3|s) .00 .68

Table 2 shows the maximum likelihood estimates of the model parameters as-
suming two classes. The estimates are obtained using the EM algorithm (Demp-
ster et al. 1977), which is described for mixture models of this type by Goodman
(1974ab); Bayesian posterior inferences with a vague prior distribution are sim-
ilar. Infants in the first class are characterized by low levels of motor activity,
low levels of cry, and as they grow up, low levels of fear, whereas infants in the
second class are categorized by high levels of each variable. Each of the two
classes appears to comprise about half the population.

The results of Table 2 support the idea that the population can be viewed
as a mixture of categorical types. Rubin and Stern (1995) and Gelman et al.
(1996) apply the posterior predictive approach to these data to determine if
there is any evidence that the two-class model is inadequate. Details of the
MCMC algorithm used to to fit the models and carry out the model assessment
are provided there. The discrepancy that is used is based on the likelihood ratio,

T (yobs; θ) = 2
∑

ijk

nijk log(nijk/πijk),
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which compares the estimated counts under the mixture model to the observed
counts (which can be thought of as corresponding to a saturated model con-
taining one parameter for each nonempty cell). We use yobs as generic notation
for data (here cell counts nijk), and θ as generic notation for parameters (here
cell probabilities πijk). The traditional likelihood ratio test statistic replaces the
parameters, πijk, by their maximum likelihood estimates, but our discrepancy
uses posterior draws instead. Table 3 gives the traditional test statistic for mod-
els with one through four classes along with the posterior predictive tail-area
probability for assessing the fit of the one- and two-class models. The tradi-
tional likelihood ratio test statistic and its associated reference distribution are
of limited use since the regularity conditions needed to derive the asymptotic
chi-squared reference distribution are not satisfied. In this case the posterior
predictive approach and the “invalid” traditional approach both identify the
two-class model as the smallest model that provides an adequate fit. An addi-
tional factor in favor of the two-class model is that the posterior distribution
under the three- or four-class model is multimodal and appears to be extremely
widely dispersed. These results suggest that evidence for the four-class model,
favored by a priori theory, can not be found in these data, at least as summarized
by the likelihood ratio discrepancy. This conclusion, however, simply may be an
indication that the sample size was inadequate to detect the weaknesses of the
two-class model.

Table 3. assessing the fit of finite mixture models to the infant temperament
data relative to the saturated model. posterior predictive tail-area

probabilities were not obtained for the three-class and
four-class models.

Likelihood Posterior
Model Degrees of ratio test predictive tail-area
description freedom statistic probability, PT

Independence (= 1 class) 28 48.8 0.06
2 Latent Classes 20 14.1 0.74
3 Latent Classes 12 9.1
4 Latent Classes 4 4.7

3.2 Exploring the effect of sample size. Scientific theory suggests a four-
class model and, moreover, the theory tells us what the infants in each class
should be like. We should expect intermediate groups in addition to the (1)
high motor, high cry, high fear group and the (2) low motor, low cry, low fear
group identified by the two-class model. Specifically, one should expect to find
high motor, low cry infants (and their opposites) having somewhat intermediate
values of fear. It appears that in the current data set, the more fearful of these
intermediate children are combined with the high fear children and the less
fearful are combined with the low fear group. If the four-class model is accurate,
how large a sample would be required to expect to find fault with the two-class
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model? We apply the technique described in Section 2 to address this issue. It
should be emphasized that the technique for estimating the required sample size
does not depend in any way on the observed data set of the previous section,
the data there merely motivate the question.

The first step required is to specify a prior distribution on the four-class
model parameters. We specify a Dirichlet prior distribution for the parameters
of each multinomial distribution in each class (recall that there are indepen-
dent multinomial distributions for motor activity, cry and fear in each class).
We also specify a Dirichlet prior distribution for the parameters of the multino-
mial distribution describing the size of the classes, (πs, s = 1, . . . , 4). Moreover,
we assume that all of these Dirichlet prior distributions are independent. The
Dirichlet is quite convenient in this case because it is conjugate for the multi-
nomial distributions in a number of the MCMC sampling steps. The Dirichlet
distribution is usually parameterized in terms of a vector of prior sample sizes
(e.g., see Gelman et al., 1995). The prior sample sizes give information about
the a priori expected values of the multinomial component probabilities. It is
convenient here to characterize prior information in terms of a vector of prior
sample proportions, α with

∑
i αi = 1 (where the number of elements of α is

equal to the number of multinomial cells on which the Dirichlet is defined), and
a prior overall sample size m. The usual parameterization is obtained upon mul-
tiplying α by m. Large m corresponds to a great deal of prior information and
small m corresponds to vague prior information.

Table 4. Parameters of Dirichlet prior distributions for four-class
model parameters assuming prior sample size equal to one.

Dirchlet parameters α
for parameters in class

Parameter 1 2 3 4
Distribution
of population πs = Pr(s) .35 .25 .25 .15
across classes

Distribution of πi=1|s = Pr(M = 1|s) .45 .05 .40 .10
motor activity πi=2|s = Pr(M = 2|s) .35 .15 .30 .20
within classes πi=3|s = Pr(M = 3|s) .15 .35 .20 .30

πi=4|s = Pr(M = 4|s) .05 .45 .10 .40

Distribution πj=1|s = Pr(C = 1|s) .80 .05 .15 .60
of cry within πj=2|s = Pr(C = 2|s) .15 .15 .25 .25
classes πj=3|s = Pr(C = 3|s) .05 .80 .60 .15

Distribution πk=1|s = Pr(F = 1|s) .80 .05 .15 .60
of fear within πk=2|s = Pr(F = 2|s) .15 .15 .25 .25
classes πk=3|s = Pr(F = 3|s) .05 .80 .60 .15

Table 4 provides the vectors of expected proportions for our prior distribu-
tions (corresponding to m = 1); the prior sample size is varied in subsequent
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discussion. Classes 1 and 2 are assumed to be similar to what was found in the
original data; class 3 comprises children tending to have low motor scores, high
cry scores, and intermediate-high fear scores, whereas class 4 comprises children
with high motor scores, low cry scores and intermediate-low fear scores. The
relative sizes of the four classes and the expected distribution within each are
essentially educated guesses based on conversations with psychologists. We do
not discuss these values further.

The posterior predictive sample size technique (the P 2S2 technique) of Sec-
tion 2 is used to assess the sample size required to expect to find that a particular
model is inadequate. Our main interest is in assessing the fit of the two-class
model but, we also present results for the one-class model. Recall that with our
data the one-class model was clearly invalid and even a sample of size 93 was
sufficient to detect its inadequacies. The two-class model is of more interest since
we have already seen that our particular sample of size 93 did not detect any
problems with the two-class model, at least using the likelihood ratio discrep-
ancy. Since the P 2S2 technique requires a Bayesian analysis of each simulated
data set under the simpler model Mo, we must specify a prior distribution for
the parameters of the one-class and two-class models. When simulated data are
analyzed using the one-class model, we use Dirichlet prior distributions with
equal prior sample proportions. The prior distributions for the two-class model
are taken to be identical to the first two columns of Table 4 with the expected
proportion of the population in the first class equal to 0.55. In both cases,
the prior sample size is fixed at one because this is a low-precision prior that
guarantees proper posterior distributions.

We report QT (N, Mo,Mh), the tail probability comparing the discrepancy
between the model Mo (the one- or two-class model), and the simulated data
drawn from the hypothesized true model Mh (a sample of size N from the
four-class model), with the discrepancy between Mo and posterior predictive
replications under Mo. Small values of Q indicate that the specified sample size
provides a reasonable chance of identifying weaknesses in the simpler model,
Mo. Table 5 gives values of Q for evaluating one- and two-class models for a
range of sample sizes (100, 250, 500 and 1000), and a range of prior distribution
precisions for Mh (the effective sample size of the Dirichlet prior distributions
in Table 4 is varied from 1 to 100). The results are based on 1000 samples
drawn from the four-class distribution. All of the sample sizes are sufficient to
reject the one-class model that implies that M,C, F are independent. It appears,
however, that a sample size of 1000 is required to expect to find the two-class
model inadequate. As expected, increasing the sample size, N, increases (within
the bounds of the simulations’ binomial sampling variability) the probability
that the incorrect (one-class or two-class) model will be found inadequate.

The behavior of Q as the prior sample size increases is a bit more subtle. In
this instance, a high-precision prior distribution on the parameters of the four-
class model (m = 100) suggests that a sample size bigger than 1000 is needed to
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find the two-class model inadequate whereas the low-precision prior distribution
(m = 1 or m = 10) suggests that 1000 is about the right sample size. This effect
is a consequence of the values chosen for the prior distributions in Table 4. The
four-class model with those expected parameter values generates data that is
similar to data possible under a two-class model so that prior distributions with
large prior sample sizes (little prior uncertainty) tend to simulate data sets in
which the two extra classes are difficult to detect. By contrast, small prior sam-
ple sizes (greater prior uncertainty) increase the chance of obtaining simulated
data sets for which four classes can be more easily detected. If the expected
parameter values in the four classes are chosen so that the four subpopulations
are more disparate, then we find the reverse pattern: smaller sample sizes are
needed if high-precision prior distributions are used instead of low-precision prior
distributions. Incidentally, it has not been possible to put this sample size cal-
culation to the empirical test because sample sizes of 1000 are nearly impossible
in infant temperament research.

Table 5. tail-area probabilities for the likelihood ratio discrepancy.
all estimates are based on 1000 simulated data sets of the specified
sample size from the four-class model with prior distributions speci-
fied by the dirichlet parameters in table 4 and the prior sample size
m. small values indicate that the simpler model (one class or two
classes) is likely to be found inadequate based on samples of size N .

prior sample size
sample m = 1 m = 10 m = 100
size, N 1-class 2-class 1-class 2-class 1-class 2-class

100 0.041 0.293 0.021 0.312 0.007 0.434
250 0.025 0.222 0.000 0.267 0.000 0.452
500 0.020 0.201 0.001 0.182 0.000 0.425

1000 0.015 0.146 0.000 0.085 0.000 0.328

4. Additional issues

4.1 Relation to traditional power calculations. The idea of determining in
advance the sample size needed to provide a study with a reasonable probability
of detecting an expected effect is certainly not a new one. Tables relating the
sample size, expected effect, significance level and power (probability of rejecting
the null hypothesis) at fixed alternatives are available for many standard statis-
tical methods (e.g., two-sample tests of means and proportions). The existing
tables, however, do not allow one to easily evaluate power against a fixed prior
distribution of alternatives. In addition, no such tables exist for fitting mixture
models or the other types of sophisticated models that are increasingly common
in applied statistical work. The technique described here allows us to extend
the traditional approach to determining power and sample size to these models.
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We can relate our posterior predictive sample-size (P 2S2) technique to tradi-
tional approaches for determining power and sample size by carefully considering
the elements that play a role in our technique. Recall that QT (N, Mo,Mh) is
actually an integral (or average) over four distributions:

• the prior distribution on the parameters of the hypothesized model Mh;

• the data distribution under the hypothesized model Mh;

• the posterior distribution of the parameters under the fitted model Mo;

• the posterior predictive distribution of replicate data under Mo.

A very precise prior distribution on the hypothesized model is nearly equivalent
to specifying exact values for the parameters of Mh. In that case our technique
is similar to the traditional idea of specifying a particular alternative and using
repeated samples from that alternative to address power or sample size concerns.
One disadvantage of this traditional approach in high-dimensional problems is
that it can be difficult to specify a small but still reasonably complete set of
alternatives. Our fully Bayesian P 2S2 approach provides an opportunity to av-
erage over a prior distribution of alternatives. Or in analogy with power curves,
we can model QT empirically as a function of values of the parameters θh. An-
other difference between the approach described here and the traditional one
is that the full posterior distributions of discrepancy measures are available for
assessing model fit; the traditional approach relies on formal test statistics with
fixed binary decision rules for accepting or rejecting a model. In addition, the
justification for the test statistics used in traditional procedures is often based
on asymptotic theory valid only for regular and nested models, whereas our
Bayesian approach using posterior predictive discrepancies obtains valid poste-
rior inferences regardless of sample size and with no critical restrictions on the
models that can be used.

4.2 Other study design issues. Sample size naturally has a substantial effect
on our ability to distinguish between two competing models. There are often
other possible refinements of a study that may help provide a better assessment
of the propriety of a hypothesized model. Our P 2S2 technique can be used
easily to address such refinements. For example, in some instances, studies
obtain data via two levels of sampling (e.g., classrooms are sampled and then
students within the classrooms provide data). Our P 2S2 approach can be used
to assess the relative benefits of obtaining more classrooms and more students
within each classroom. Also, we can speculate on the effect of measuring an
additional variable. In the psychology mixture model example, we find that it
would be possible to invalidate the two-class model using only 250 observations
if there were four observable variables rather than three (the P 2S2 results are
not provided here). This result is quite speculative because it assumes that
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we can identify another observable variable that provides independent, reliable
information about infant temperaments.

5. Concluding comments

Model assessment and model choice are active areas of research among fre-
quentist and Bayesian statisticians. The Bayesian P 2S2 approach demonstrates
that advances in computational technology and algorithms have made it possible
to perform common statistical tasks, like sample size determination for model
assessment and choice, for increasingly complex models.
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