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SUMMARY. We give here a complete description of triplets and quadruplets of pairwise
independent binary random variables with a special emphasis on the role of Bernstein’s example.

1. Introduction

A central part of the theory of probability is devoted to the study of sequences
of random variables, which are mutually independent. It is almost complete and
considered classical. There are many different ways to study such sequences, when
some dependences between random variables appear. Traditionally, some aspects
of dependence are expressed in terms of conditioning with respect to the past,
like for Markov processes or for martingales. A different type of dependence is
given by exchangeability and others by “separated” forms of independence like m—
dependence or by “asymptotic” independence described by various types of mixing.

Here we propose another point of view on the notion of dependence. We suppose
that we lose the mutual independence, when the number of observed variables ex-
ceeds some fixed level; for example, if any two variables are independent, but some
triplets (or more numerous groups of them) are dependent, then this case is called
pairwise independent. One can find an introduction to this subject in Stoyanov’s
very interesting book (Stoyanov, 1987, Sections 3 and 7). The main disadvantage
of this notion is that there is no general method of the construction of pairwise
independent sequences, so a really new example of such a sequence is always an
interesting mathematical object. Moreover, in Derriennic and Klopotowski (1991)
we have shown that a pairwise independence is not constructive in the sense, that
laws of corresponding processes can not be constructed by induction like for ex.
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Markov chains. All known pairwise independent sequences are constructed by in-
duction, so it would be interesting to find an essentially non-constructive example
of it. We present here a very beginning of the theory giving a complete descrip-
tion of triplets and quadruplets of pairwise independent binary random variables
with a special emphasis on the role of Bernstein’s example. (Let us remark that
in Derriennic and Klopotowski (1991) we have given a very partial description for
stationary sequences of five pairwise independent binary random variables.)

Paradoxically, a great number of articles were devoted to a very particular case
of mutually independent random variables and very few are concerned with a wider
class of pairwise independent sequences. We can quote (non-exhaustively) the ar-
ticles of Robertson (1988a, 1988b, 1988c) Robertson and Womack (1985), Etemadi
(1981) and Janson (1988), as the most interesting ones. Let us mention that in Bre-
tagnolle and Klopotowski (1995) we have given the first known example of pairwise
independent non-symmetric coin tossing. In Klopotowski and Robertson (1999) we
give some new examples of sequences of pairwise independent random variables and
we present some open problems related to Banach’s famous question about the exis-
tence of a dynamical system with simple Lebesgue spectrum (see also Ktopotowski
and Nadkarni (1999) for a more advanced approach).

2.  Preliminary Notions

Let (Q,F,P) be a fixed probability space. We recall that two events A, B € F
are said to be independent (with respect to P), if

P(AN B) = P(A)P(B).

Two o—fields Fi, Fo C F are independent, if any two events A; € Fy, Ay € Fo, are
independent.

We say that the events Ay, A, ..., A, € F are mutually independent, if for each
2<k<nandforeach1l<i; <iy <...<i <n we have

P(A;, N Ay N...NA;) = P(4;,)P(Ay,) ... P(A;,).

A finite family of o—fields {F; C F; 1 <i < n} is mutually independent, if every
choice of events A; € F;, 1 <i < n, is independent.

An infinite family of o—fields {F; C F; i € I} is mutually independent, if each
finite subfamily {F;,, ix € I; 1 < k < n} is independent.

The mutual independence of random variables X;, i € I, is defined using gen-
erated o-fields F; := X, '(BY) C F, i € 1.

A family of o-fields {F; C F; i € I} (or of random variables {X;; i € I}) is
pairwise independent, if every two of them are independent.

A sequence of random variables X,,, n € Z, is stationary if and only if for each
n € Z and for each k,m € N the random vector (X,, Xp+1,..., Xntm) has the
same joint probability law as the random vector (Xpik, Xntktts---> Xntktm); it
is exchangeable if and only if for each n € Z and for each m € N the random vector
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(Xn, Xnt1,--->»Xntm) has the same joint probability law as the random vector
(Xon)s Xo(nt1)s - - - » Xo(ntmy) for every permutation o of {n,n+1,...,n+m}. (N
and Z denote the sets of naturals and integers.)

Obviously exchangeability implies stationarity, but the converse implication is
not true.

3. Bernstein’s Examples

The fact that pairwise independence does not imply mutual independence was
mentioned for first time in the correspondence in the years 1910 to 1917 between
A.A. Chuprov (1874-1926) and A.A. Markov (1856-1922). The following example
is attributed traditionally to S.N. Bernstein (1946).

Let us consider Q := {wi,ws,ws,ws}, F =29, P({wy}) :==1; 1 <k < 4. We
define random variables X; : (0, F,P) — {0,1}; i =1,2,3, by:

1 ifw=w,wiii;

0 ifw ;é W1, W14i-

We see at once that X, X5, X3 are pairwise independent:

]P[Xl = O,XQ = 0] = HD({LU4}) = i = ]P[Xl = 0] . ]P[XQ = 0],
PIX: = 0, X5 = 0] = P({us}) = 7 = P[X1 = 0] P[X; = 0],

On the other hand, X7, X5, X3 are not mutually independent:
1
PX:=1,Xo=1,X3 =1 =P{w1}) = 1 #P[X, =1]-P[Xy =1] - P[X3 =1].

Moreover,

P[X; =1,X, = 0, X5 = 0]
= PX;=0,X,=0,X5=1] =

P[X; =0,X,=1,X3=1] =P[X; =1,X5 =0, X3 = 1]
= ]P[Xl:1,X2:1,X3:0]:]P[X1:O,XQZO,X?,:O]:O-

Interchanging 0 and 1 we obtain a symmetric example. These examples can be
obtained in a different way found by Markov. Suppose that we have two independent
and identically distributed random variables Y7,Y> taking the values —1,+1 with
the probability 2. Then the probability law of the random vector (Y1,Y2,Y1Y2) is
(essentially) the Bernstein’s one.
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4. General Case of Three Binary Variables

A natural question is: are Bernstein’s examples the only one’s possible? FELLER
has considered them as curiosities and has said that “..It still takes some search
to find a plausible natural example...” (Feller, 1968, p. 126). In this section we
describe completely all triplets of pairwise independent binary random variables
and then we discuss the exceptional character of Bernstein’s examples.

Let us suppose that the values of the considered random variables are 0 and 1,
the probabilities

p:=P[X; =0], ¢:=P[X, =0], r:=P[X3 =0],

are given and they determine all two—dimensional marginal laws as products, so
that the random variables X, X5, X3 are pairwise independent. Without loss of
generality we can suppose that:

0<p<g<r<l. (1)

It is easy to prove:

THEOREM 1. Let X; : Q@ — {0,1}; i = 1,2,3, be random variables described
above. They are pairwise independent if and only if:
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,X3:1]:Oz+p(1—q—7“),
Xs=1=1-a—-—p—q—r+pg+qr+pr,
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for each value of the parameter o satisfying

®(p,q,r) < a < ¥(p,q,r), (3)
where
®(p,q,7) :=max {0, plg+r—1), gqlp+r—1), r(p+q—1)},
¥(p,q,r) :=min {pq, pr, gr, 1 =p—q—r+pg+pr+qr}.
Equivalently,
0 <a<pg, if p+q<1l and q+r <1
plg+r—1) <a<pg, if p+q<1 and q+r>1;
plg+r—1) <a<pg—(p+q—1)(1-r), if p+qg>1 and q+r>1.
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The domains of « given by (3), (4), (5), always contain the point ag = pgr,
which represents the mutual independence of X1, X5, X3. They are reduced to one
point, when at least one of the values of p,q,r, is equal to 0 or 1, i.e. at least one
variable considered is constant, which evidently gives the mutual independence.

In the stationary case p = ¢ = r the parameter a must satisfy

1
0<a<p’ if 0<p<g, (4)

1
2" —p<a<3p’-3p+1, if 3 <p<l, (5)

(see Fig.1). Observe that three stationary pairwise independent variables are always
exchangeable.

It is easy to verify that for each k, 4 < k < 8, there exist three pairwise
independent binary random variables defined on the discrete probability space of
k points. If £ = 4, then Bernstein’s examples are the only possible ones, which is
surprising. In the nondegenerate case one can not have less than 4 atoms; in this
sense Bernstein’s examples are optimal and unique.

5. General Case of Four Binary Variables

Now, we ask if there exist four binary pairwise independent random variables
such that at least one three—dimensional marginal is equal to one of Bernstein’s
examples. The answer is trivial; it suffices to take X, independent of the vector
(X1, X5, X3). In this case we lose stationarity and exchangeability of the random
vector (X, X2, X3, X4), so the next question is, how to do it keeping at least one
of these properties. As we shall see below, it is also not possible.

For it, firstly we give a general description of four pairwise independent random
variables X; : (2, F,P) — {0,1}, i = 1,2, 3,4, such that their probability laws are
given by:

PX; =0]=p, P[Xo=0]=g¢q, P[X5=0]=r, P[X; =0]=s,

where
0<p<qg<r<s<l. (6)

This is equivalent to characterising all probability measures concentrated in the
corners of the four-dimensional cube [0,1]*, such that all their marginal laws of
dimension 2 are product measures of those of dimension 1.

Let us suppose that the common law of every triplet (X;, X;, X}) is already
chosen, i.e. one has:
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where a1, as, a3, a4 satisfy the inequalities analogous to (3).
As in the three-dimensional case we put some mass into one corner; the measures
of the others are completely determined. First we put

IF’[X1:0,X2:0,X3:0,X4:0] = A. (8)
The equalities analogous to

a1 =P[X; =0,X,=0,X5=0]= A+ P[X; =0,X, =0, X5 =0, X, =1]

imply
]P[Xl :O,XQ :0,X3 :0,X4: 1] = Q1 —A,
]P[Xl :0,X2 :0,X3 = ].,X4 :O] = QA —A, (9)
]P[Xl :0,X2 = ].,Xg :0,X4:0] = a3 —A,
]P[Xl = ].,Xz :0,X3 :0,X4:0] = 044—14.

Now we want to have, for example,

IP[X1:O,X2:0,X3:O,X4:1] + P[X1:07X2:07X3:17X4:1]
= PX;=0,X,=0,X4, =1 = —a+pq,

so we must define
PX1=0,X2=0,X3=1,X4=1]:=A4+pg—a; —as. (10)
We have

P[X; = 0,Xs =0, X3 =1, X, = 0] + P[X; = 0, X5 = 0, X3 = 1, X; = 1]
=ay—A+A+pg—ar —ay=—a; +pg=P[X; =0,X,=0,X3 =1],

so the measure of the corner (0,0,1,1) does not depend on the way by which we
arrive from (0,0,0,0) to (0,0,1,1). In the same manner, we define:

]P[Xl :0,X2 :].,X3 :0,X4 = ].] 2:A+p7'—0(1 — Q3,
]P[Xl :O,XQ :1,X3 = 1,X4 :0] ::A+ps—a2—a3,
PX1=1,X2=0,X3=0,Xy=1]:=A+qr —a; —ay, (11)
PX1=1,X2=0,X3=1,X,=0]:=A+¢s — a2 — ay,
]P’[Xl =1,X,=1,X3=0,X4 :0] = A+rs—as — ay.

The equality

PX1=0,X>=1,X5 =1, Xy = 1]+ P[X; =0,X> =0, X3 =1, Xy =1]
:]P[Xl :07X3 = 17X4 = 1] = Q3 +p(1_7'_3)7

implies

PX:1=0,Xo=1,X3=1,Xy=1:=—A4+a+az+ag+p(l—g—r—s) (12)
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and similarly we put

PX:=1,Xo=1,X3=0,Xy=1:=-A4+a1+tas+as+r(1—p—q—2s),
PX:=1,X=0,X3=1,Xy=1:=-A4+a1+tas+as+q(l—p—r—23),
PX:=1,Xo=1,X3=1,X4y=0=-A4+a+t+as+as+s(l—p—q—r).
(13)
Finally, we define the measure of the last corner as the difference between 1 and the
sum of measures of all other corners

PX:=1,Xo=1,X35=1,Xy=1:=1-p—q—r—35

14
—a1 —ay—ag —ag+pg+pr+ps+qs+qr+rs+ A (14)

All the numbers above are well defined, so they are non-negative if and only if the
parameter A satisfies the following inequalities

F(al,az,ag,a4;p,q,r,s) S A S G(a17a27a37a4;p7q7r7 3)7 (15)
where

F(O[l,OéQ,Oé3,0é4;p,q,7",5) ‘= max {07 a1 +a2 —pq, a1 +Oé3 —pr,
s +a3 —ps, a1 +aqq —qr, a2 + a4 —qSs, az3 + a4 — T8,
p+qg+r+s—1+ar+a+as+as—pg—pr—ps—qr—qs—rs},

G(ala Q2,Q3,04;P,4,T, 5) = min {ala G2, (3, Oy,

s(l—=p—q-r)+oaztazst+as, r(l-p—q—s)+o1+as+a,

gql—p—r—s)4+a1+as+ay, pl—q—71—38)+a; +as+az}.
Theorem 1 implies:

THEOREM 2. Let X; : (O, F,P) — {0,1},i =1,2,3,4, be random variables sat-
isfying (6) and (7). They are pairwise independent if and only if their common prob-
ability law is given by the equalities (8) — (14), where the parameters ay, s, as,ay
satisfy the inequalities analogous to (3) and the parameter A satisfies the inequality
(15). O

fFo<p<g<r<s<landr+s<1,then a;, 1 <% <4, must satisfy

0<a; <pg, 0<as<pg, 0<a3 <pr, 0<ay <qr,
so choosing
ay =pgq, az =pq, ag =pr, ag =0,

we have
F(ai1,asz,a3,a4;p,q,7,5) > pg >0

G(Oél,OéQ,Oé3, a4;p,q,T, S) = 07
and hence the searched four—dimensional measure does not exist.

COROLLARY 1. Let X; : (0, F,P) — {0,1}, i = 1,2,3,4, be pairwise indepen-
dent random variables satisfying (6) and such that one of their three—dimensional
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marginal laws is of Bernstein’s type. Then such a random vector is independent
from the remaining fourth variable. 0

It is easy to see that in this case each triplet containing the fourth variable is
mutually independent, all four variables are not mutually independent and are not
exchangeable. The vector (X, Xs, X3,X4) can be stationary only if the laws of
(X1, X5, X3) and (X2, X3, X,) are not of the Bernstein type.

COROLLARY 2. There is no four random variables such that:

e all marginal three—dimensional laws are equal to the same law given by one of
Bernstein’s examples;

or

e every common law of dimension 3 is equal to the one of the Bernstein’s laws.

O

6. Case of Four Exchangeable Variables

Let us suppose that
P=q=Tr=s, @1 =03 = @3 = Q4 1= Q,

where the parameter a satisfies (4) or (5).

If we choose some value of parameter A satisfying (15), then the corresponding
measure is exchangeable, because the measures of corners depend only of the number
of their zeros.

The inequality (15) takes the form

max {0,2a — p*,4a — 1 +4p — 6p?} < A < min {a,3a+ p(1 —3p)}.

We see immediately that

1° 0<A<3a+p(l-3p),if0<a<Z anda<ip3p-1);

2° 0§A§a,if0§a§§and%p(?)p—l)ga;

3° 2a—p? §A§3a+p(1—3p),if§ <a< %-1-2(1)—%)2 and o < 1p(3p—1);
4° 2a—p2§A§a,if§§a§§+2(p—%)2and%p(3p—1)<a,

5° da—1+4p—6p2 < A<3a+p(l—3p),if £ +2(p—1)2<a

and o < $p(3p — 1);

6° 4da—1+4p—6p> < A<a, if%-{—?(p— %)2 <« and %p(?)p—l) < a.

In the case 1° one has 0 < 3a + p(1 — 3p) if and only if @ > £p(3p— 1). Hence if
a < 3p(3p—1) (for ex. a =0, p = %), the parameter A (i.e. the searched measure)
does not exist.

Similarly in the case 6° we have 4o — 1 + 4p — 6p? < « if and only if a <
2p% — %p + %, so for a > 2p? — %p + % the parameter A does not exist (for ex.
a =1 p=1). Itis easy to verify that in the cases 2°-5° all the intervals for
“admissible” values of A are non-empty.

The picture below shows, which three—dimensional laws can be extended to the
exchangeable four—dimensional law.
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Figure 1

7. Case of Four Stationary Variables

Assume that
p=q=r=s,

(675] :]P[Xl :0,X2 :0,X3 :0] :]P[XQ :0,X3 :0,X4 :0] = Q4 = Q.

=y
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In this case the parameter A must satisfy the inequality
®(a, az,a3;p) < A < ¥(a,az,a3;p), (16)
where

q)(a,OéQ,Oég;p) = max {0,20[ —pQ,Oé—F 6%)] _ana +Oé3 _p27a2 +Oé3 _p27
20+ g + ag — 6p® + 4p — 1},
U(a,az,a3;p) =min  {a, a2, a3, + a2 + a3z + p(1 — 3p), 2a + as + p(1 — 3p),
200+ a3 +p(1 —3p)}.

This interval is non-empty if and only if the following inequalities are satisfied:

max {0, (2p — 1)p} < a@ < min {p2, 3p° —3p+ 1}, (17)
max {0, (2p — 1)p} < a2 < min {;[)2,3;[)2 —3p+1}, (18)
max {0, (2p — 1)p} < a3 < min {p®,3p* — 3p+ 1}, (19)

Bp—lp<at+a+az;<6p”—4p+1=03p’-3p+1)+@Bp—1)p, (20)

(Bp—1Dp<2a+ay <6p*—4p+1, (21)
Bp—Dp<2a+as3<6p>—4p+1, (22)
(2p—1)p < 20—y < p?, (23)
(2p—1)p <20 — a3 < p?, (24)
2p-p<a+ar —asz <p’, (25)
2p—-lp<a—a+as <p’ (26)
2p-1p< —a+as+as <p (27)

Each inequality above means that the set of admissible parameters («, @z, az) is
contained between two parallel planes and obviously it is equal to the intersection
of all domains given by (17) — (27).

For p = % we obtain the following set:
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Figure 2

Then for p = £ and for (a, a2, a3) outside of the set A the searched measure
does not exist. In particular, we can see once more that it is not possible to extend
Bernstein’s examples (« = 0, %) to the stationary and pairwise independent four—
dimensional measure. In fact, we have already seen that the only possibility of
extending one of Bernstein’s laws to four pairwise independent random variables
is in a trivial manner, i.e. when the variable X, is independent of the vector

(X17X27X3)'

It does not mean, that there is no four stationary random variables such that
one of its marginal three-dimensional laws is equal to some Bernstein’s example.
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Fig. 2 shows that there are exactly four such measures, represented by “extremal”
points of the set A. It can be proved that these measures can be extended (keeping
stationarity and pairwise independence) only up to dimension seven, every step
being unique.

8. Multidimensional Bernstein’s Example

The following example can be found in Stoyanov (1987).
Let us consider n—dimensional product {0,1}", n > 3. First we define

v(z) := number of zeros in z € {0,1}",
and then we define a measure P on {0,1}" by:

1

P if v(z)is an odd number;

P(x) :=
0, if not.

For n = 3 it gives the example of Bernstein. One can prove:

THEOREM 3.

e All n canonical projections are (under P) pairwise independent and exchange-
able.

e Moreover, every n — 1 canonical projections are mutually independent.

e This measure realises the one—dependence, i.e. for every 1 < k < n the vectors
composed by the k—1 first projections and the n—k last projections are independent.

e The measure P has an unique stationary extension P to {0, 1}, for which
the pairwise independence is not verified. n

REMARK. Let us consider the random vector (X,Y,Z, XY Z) , where X,Y, Z,
are mutually independent random variables taking the values 1 with probability
1. It is triplewise, then also pairwise independent and it has (at least) three non-
trivial pairwise independent extensions: (X,Y,Z, XY Z, XY), (X,Y,Z, XY Z,XZ)
and (X,Y,Z, XY Z Y Z), which evidently can not be stationary. It would be inter-
esting to verify, if there exist other non-trivial pairwise independent extensions of
(X,Y, Z, XY Z).
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