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THE SMIRNOV CLASS ON COMPACT GROUPS
WITH ORDERED DUALS*

By HENRY HELSON
University of California, Berkeley

SUMMARY. On the circle group, the Smirnov class A is the largest extension of the spaces

Hp to which the calculus of Fourier series can be extended (Helson, 1990a,b,c). This note explores

a definition of the class on the compact abelian groups studied in Helson, (1975).

1.

On the circle, A is the set of quotients k = f/g where f, g are in H2 and g is
outer. If k has this form, then f and g can be chosen to be bounded functions. In
Helson (1990a) it was shown that a nonnull function k is in A if and only if log |k|
is summable, and k has this property: whenever g is in H2 and kg is in L2, kg is in
H2. This characterization seems closer to the properties of analytic functions than
the definition as a quotient.

Some proofs will rely on results from Helson (1975). This should not prevent a
reader unacquainted with Helson (1975) (that is, almost everyone) from following
the arguments and understanding the theorems.

2.

Let K be a compact abelian group whose dual Γ is a dense subgroup of the real
line R, endowed with the discrete topology. For x in K and λ in Γ, x(λ) is the value
of the character x at λ; and χλ(x) is the same number, regarding λ as a character
of K. Normalized Haar measure on K is σ. Fourier coefficients of a summable
function f are

aλ(f) =
∫

f χλ dσ (λ in Γ). (1)
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The spaces Lp(K) are constructed for p > 0. The subspace Hp(K) is the closure
of the analytic trigonometric polynomials (linear combinations of χλ with λ ≥ 0
in Γ) in the metric of Lp(K). For p ≥ 1 these are the functions of Lp(K) whose
coefficients vanish for λ < 0; and Hp

0 (K) is the subset consisting of functions for
which also a0 = 0.

In K we define the one-parameter subgroup K0 consisting of the elements (et),
where for each real t, et is the element defined by et(λ) = exp itλ (λ in Γ). In
L2(K) define the unitary operators

Ttf(x) = f(x + et). (2)

On the circle group, log |g| must be summable for every nonnull element g of
any space Hp. This is not so on K; instead, the necessary and sufficient condition
for w, a positive function in some class Lp(K), to be the modulus of a function in
Hp(K) is that ∫ ∞

−∞
log w(x + et)

dt

t2 + 1
> −∞ a.e. (3)

On the circle group this condition is the same as logarithmic summability, but on
K it is weaker.

An invariant subspace is a closed subspace M of L2(K) such that for every f in
M , each product χλ ·f with λ > 0 in Γ also belongs to M . The subspace is simply
invariant or proper if this fails to be true also for negative λ. Each f in L2(K) is
contained in a smallest invariant subspace, denoted by Mf . This subspace is proper
if and only if w = |f | satisfies (3). f is a generator for the subspace. The prototype
of an invariant subspace is H2(K); and H2

0 (K) is a related one. H2(K) is generated
by the constant function 1; it has other generators, which are called outer functions.
A main open question is whether every proper invariant subspace has a generator;
and in particular, whether H2

0 has. A generator of H2
0 , if there is one, should also

be called an outer function.
Proper invariant subspaces M come in two versions. M+ is the intersection of

the subspaces Mλ = χλ ·M for negative λ in Γ; M+ contains M . M− is the closure
of all Mλ for positive λ in Γ; this subspace is contained in M . Actually (Helson,
1975) M− and M+ are either identical or one dimension apart, so that M is the
same as one or both of them. H2(K) and H2

0 (K) are examples of versions, each
of itself and of the other. In every case where the versions of M are unequal, the
versions of M are q ·H2(K) and q ·H2

0 (K) where q is a function of modulus 1 a.e.
Mg equals (Mg)+ 6= (Mg)− if and only if log |g| is summable; this is a Beurling
subspace. Otherwise Mg = (Mg)−, and it is not known whether (Mg)+ can be
larger.

To each proper invariant subspace M is associated a subspace M̃ , consisting of
all g in L2(K) such that fg is in H1(K) for each f in M . (M̃ is closely related
to the orthogonal complement of M .) We always have M̃ = (M+)∼ = (M̃)+, and
˜̃
M = M+.
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3.

Since a generator of H2(K) must have summable logarithm, the definition of
the Smirnov class on K as quotients, in which the denominator is outer, will not be
appropriate. Instead, the properties of the class are captured by a modification of
the property mentioned above, leading to this definition: the Smirnov class A(K)
consists of the null function, and all functions F whose modulus w = |F | makes
(3) finite, and such that whenever g is in H2(K) and Fg is in L2(K), then also Fg
belongs to H2(K).

Theorem 1. The Smirnov class consists of all quotients f/g in which f, g are
in L2(K), w = |g| satisfies (3), and f belongs to Mg.

If f belongs merely to (Mg)+, the quotient is still in A(K), because if r is
any function in H∞(K) such that log |r| is not summable, then rf belongs to
Mrg = (Mrg)−.

Every nonnull element of a proper invariant subspace has modulus that satisfies
(3), so f will have that property. In the definition there is no requirement that f
and g should be analytic, but as we shall see, they can always be chosen to be.

Let F be a nonnull function in A(K); we shall show that it is a quotient of the
given form. On account of the hypothesis on the modulus of F , there are nonnull
functions g in H2(K) such that f = Fg is square-summable, and therefore belongs
to H2(K). We show that f belongs to Mg, or at least to (Mg)+.

It will be sufficient to show that if k is any square-summable function such that
kg is in H1(K), then kf is also in H1(K). Now kf = Fkg. If k is bounded, this
product is in H2(K) by the definition of A(K), as required. The set of all such
square-summable k constitutes an invariant subspace, and bounded functions are
dense in every such subspace (Helson, 1975); this completes the proof.

In the other direction, let F = f/g be a quotient of the sort described; we show
that F is in A(K). Multiplying f and g by the same bounded function if necessary,
we can assume that they are bounded functions. Let h be any function of H2(K)
such that Fh = fh/g is square-summable; we are to verify that this quotient is
analytic. First we assume that h/g is square-summable.

Since f is in Mg, there is a sequence (Pn) of analytic trigonometric polynomials
such that Png converges to f in L2(K). By the Schwarz inequality, (Png)h/g
converges in L1(K) to fh/g. But Pnh is analytic, so the limit is too. This shows
that Fh is in H2(K).

Now we give up the assumption that h/g is square-summable; we merely suppose
that fh/g is square-summable. Let r be any function in H2(K) such that r/g is
square-summable. Since f is bounded, it is easy to see that fh is in Mg. By what
we have just proved, fhr/g is in H2(K). If the set of such r is dense in H2

0 (K),
then fh/g must be in H2(K).

Write r = gk; the set of all r is the set of all gk where k is square-summable

and belongs to ˜̃
Mg. Now g ·˜̃Mg is dense in H2

0 (K) (Theorems 18 and 20 of Helson
(1975)); this finishes the proof.

There is a kind of converse statement.
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Theorem 2. If F is in A(K), and if g and f = Fg are in L2(K), then f is in
(Mg)+.

Take h any bounded function in ˜̃
Mg. Then gh is in H2(K) and Fgh = fh

in L2(K). Since F is in A(K), fh is in H2(K). Bounded functions are dense in
any invariant subspace; hence the same is true for any h in M̃g. Thus f is in
˜̃
Mg = (Mg)+ as we wished to show.

Corollary. Let h belong to H2(K). h is outer in the generalized sense that
Mh is H2(K) or H2

0 (K) if and only if 1/h belongs to A(K).
By Theorems 1 and 2, 1 is in (Mh)+ if and only if 1/h is in A(K); there is

nothing to prove.
Thus h is a generator for H2

0 (K) if and only if h belongs to that space, and 1/h
is in A(K). We do not know whether there are any such functions.

Corollary. If p is a non-constant inner function on K, then 1− p is outer.
We must show that 1/(1 − p) is in A(K). The modulus w of any analytic

function satisfies (3). Now let g be a function of H2(K) such that g/(1 − p) is
square-summable. If 0 < r < 1, |1− p| ≤ 2|1− rp|. By the dominated convergence
theorem, the Fourier coefficients of g/(1−p) are limits of the coefficients of g/(1−rp)
as r increases to 1. This fraction is analytic, so g/(1− p) is in H2(K), which shows
that 1/(1− p) is in A(K), as we wanted to prove.

4.

Theorem 3. A(K) is closed under addition and multiplication.
Let F = f/g, G = h/k be functions in A(K). We assume, as we may, that

f, g, h, k are bounded functions. Then it is easy to see that fk belongs to Mgk

(using the fact that f is in Mg and k is bounded); and gh is also in Mgk. Therefore

F + G = (fk + gh)/gk (4)

is in A(K).
FG = fh/gk. If (Pn) and (Qn) are analytic trigonometric polynomials such

that Png tends to f and Qnk tends to h in L2(K), then PnQngk tends to fh in
L1(K). Thus fh is in the L1-closure of Mgk. But fh is bounded; this implies that
it is in Mgk itself (Helson, 1975, p. 12), and the proof is finished.

Theorem 4. For p > 0, A(K) ∩ Lp(K) = Hp(K).

The interesting case is p < 1; the result for such p implies the same for all p.
Theorem 4 of Helson (1975) states that Hp(K) consists exactly of those f in

Lp(K) such that fg is in H2(K) for some bounded outer function g. Our theorem
follows from this fact.

Theorem 5. If W is any positive function on K satisfying
∫ ∞

−∞
| log W (x + et)| dt

t2 + 1
< ∞ a.e., (5)
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then W = |F | for some F in A(K).

By Theorem 23 of Helson (1975), (3) is the necessary and sufficient condition
for w to be the modulus of an analytic function. Let g be a bounded analytic
function whose modulus is min (1, W ), and h one with modulus min (1, 1/W ). Then
W = |g/h|. By Theorem 16 of Helson (1975), there is a function q of modulus 1 in
Mh, and qg is also in Mh. Thus F = qg/h is a function in A(K) with modulus W .

5.

An investigation was made in Helson (1990a,b) of real functions in A on the
circle group. The result was that these are precisely the functions of the form
i(p + q)/(p − q) where p, q are inner functions, and p − q is outer. For example, if
we take p = 1 we get a class of such functions.

These examples are not interesting on K because log |1− q| is summable (unless
q = 1), and we want more exotic ones. Anyway it is interesting to find the general
form of such functions on K.

Theorem 6. The real functions in A(K) are exactly the quotients i(p+q)/(p−q)
where p, q are inner, and where (Mp−q)+ = (closure of Mp + Mq)+.

The condition, interpreted on the circle, means that p− q is outer provided that
p, q have no common inner factor. On the circle two inner functions have a greatest
common inner divisor, but no such result is known on K.

Let F be a real function in A(K), with the representation f/g of the usual sort.
Set r = g/|g|, so that rg is positive. Then rf must be real. Replacing f, g by rf, rg,
we can assume that g is positive and f real. We have

F + i

F − i
=

f + gi

f − gi
. (6)

Divide numerator and denominator on the right by (f2 + g2)
1
2 ; now the fraction

becomes p/q, where p, q have modulus 1.
Solving (6) for F gives

F = i
p + q

p− q
. (7)

Let h be a function of unit modulus such that h(p− q) is analytic. Then h(p+ q) is
analytic too, because it belongs to the subspace generated by h(p−q). It follows that
hp and hq are themselves analytic, that is, they are inner functions. Replacing p, q
by hp, hq means that the functions p, q in (7) can be chosen to be inner functions.

Let k be any function in L2(K) with k(p− q) analytic. Then, as just observed,
kp and kq must each be analytic. This implies that p, q belong to (Mp−q)+, which
establishes one inclusion in the statement of the theorem.

It is trivial that p− q belongs to Mp + Mq, and this gives the other inclusion.
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6.

Theorem 7. The following properties of a function F in A(K) are equivalent:
(a) 1/F is in A(K)
(b) The set of all functions Fg, where g and Fg are in H2(K), is dense in H2(K)
or in H2

0 (K)
(c) If g is in L2(K) and Fg is in H2(K), then g is in H2(K).

This result extends the first corollary of Theorem 2, and is analogous to a the-
orem of Helson (1990a). The properties (b, c) would be the natural definitions of
outer function in A(K). The proof is not very interesting and is omitted.

7.

LetW be the class of all positive functions w on K, bounded by 1, and satisfying
(3). In the space L2

w(K) based on the measure wdσ, let H 2
w (K) be the closure of

analytic trigonometric polynomials. The space A(K) is the union of all H 2
w (K),

w in W. We can define invariant subspaces and their versions in L 2
w (K). The

unsolved problem referred to several times can be rephrased in this way: are the
versions of H 2

w (K) necessarily equal if log w is not summable?
The union of all H 2

w (K) possesses a natural locally convex topology (Helson,
1990c). On the circle, topologies on A have been studied recently in a beautiful
paper by John E. McCarthy (1992). We shall not investigate the extension of those
results to the groups K.
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