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SUMMARY. A new approach has been developed for bioequivalence testing to avoid imprac-

tical rejections which may occur with the commonly used Westlake’s (1972) symmetric interval

procedure. These methods are shown to cover the original symmetric confidence interval approach

as a special case. Also, it is of considerable interest from the manufacturer’s point of view, to ob-

tain the minimum sample size which guarantees a pre-specified power to the test. The calculation

of this minimum sample size accounts for the plausible asymmetry in the equivalence range and

plausible non-zero expected value of the true difference. Algorithms are provided with illustrations

for both testing and sample size problems.

1. Introduction

Bioequivalence trials compare the pharmacological endpoints of different formu-
lations of a given drug. These endpoints include different measurements for the
absorption, distribution, metabolism, and elimination of the drug following admin-
istration into the human body.

In practice it is recognized that no two formulations will have exactly equal
bioavailability profiles. Therefore, a bioequivalence trial specifies clinically mean-
ingful limits and declares bioequivalence if there is sufficient evidence that the two
formulations differ by no more than the specified limits. It is recognized that a
different statistical formulation is required than the usual F-test from ANOVA to
obtain significant evidence to declare bioequivalence. Westlake (1972, 76) first in-
troduced a confidence interval approach for a formal assessment of bioequivalence.
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Anderson and Hauck (1983) presented a hypothesis testing approach where the
probability of the null hypothesis (no bioequivalence) is computed. If the prob-
ability is less than a predetermined level, bioequivalence is declared. A Bayesian
procedure for bioequivalence was presented by Rodda and Davis (1980). Given the
observed results of the study, this procedure computes the probability that the true
difference is less than the clinically important difference. Bioequivalence is declared
if a high value of the probability is observed. All these approaches declare or re-
ject bioequivalence similarly in relatively clear cases. Since the confidence interval
approach is used most commonly and since the FDA has adopted this approach as
the regulatory requirement, this article only deals with this approach.

The usual symmetric confidence interval approach based on t-distribution was
suggested by Westlake (1972). These confidence intervals are symmetric about the
sample estimate of the unknown difference. If this confidence interval is contained
within the acceptable interval, bioequivalence is decided. These procedures ignored
the need for adjusting the confidence interval with respect to the unknown difference.

There are practical concerns for using a symmetric confidence interval approach.
For example, this symmetric interval procedure rejects bioequivalence unintuitively
when the confidence interval just overlaps any of the boundaries. Also, it is unlikely
to have exact bioequivalence in any given situation; thus, we may have reasons to
believe that there may exists some non-zero difference. Since in that case the dis-
tance between the true difference and one of the boundaries decreases, we may need
a larger sample size to detect the bioequivalence. However, the usual computa-
tion available for the symmetric interval approach produces a minimum sample size
which can have enough power only in the most optimistic case of exact bioequiva-
lence.

This article considers a general method of constructing the confidence interval
and uses it appropriately to declare or refute bioequivalence. An optimization
procedure is adopted to adjust the interval to accommodate plausible asymmetry
of the target range and plausible non-zero difference between the formulations and
still maintain the power level.

For successful implementations, along with the derivation of minimum sample
size, we also provide the algorithm for computation. This sample size accounts
for the plausible asymmetry of the target range and possible non-zero difference to
protect the users from failing the objective. It is pointed out how the conventional
approaches can be obtained from this procedure as a special case.

Section 2 describes the symmetric confidence interval approach. In Section 3, we
develop the optimal method for assessing bioequivalence. We derive the minimum
sample size for the optimal method in Section 4. The methods described in these
sections are appropriately illustrated with examples and algorithms. Finally, in
Section 5 we discuss how the new methods can be useful in different situations from
practical point of view.

2. Usual Symmetric Procedure

The objective of a bioequivalence trial is to find out whether or not the difference
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between the formulations, θ, of a pharmacokinetic endpoint is within a pre-specified
acceptance region (L, U). With standard notation, denote θ̂ as the estimator of θ,
where θ̂ follows normal distribution with mean θ and variance σ2

θ̂
. If σ̂θ̂ denotes the

estimated standard error of θ̂ with ν degrees of freedom (d.f.), then using standard
distribution theory, the quantity (θ̂−θ)/σ̂θ̂ follows the Student’s t-distribution with
associated d.f. ν. Usually, the estimate θ̂ is obtained from linear combination of
appropriately transformed responses from the experiment.

For example, consider a two-period crossover design, commonly used in bioe-
quivalence trial. Let y1i and y2i denote the observed AUC from subject i, following
administrations of formulation F1 and formulation F2, respectively. Commonly, for
AUC and Cmax parameters the acceptance bounds are specified in terms of ratios,
but with the usual log-transformation, the bounds can be specified in terms of the
differences. Suppose that log yki, (1 ≤ i ≤ n, k = 1, 2), are normally distributed
with mean µk and common variance σ2. Then denoting xi = log y1i − log y2i, we
can use the sample mean of the differences, x̄, as θ̂ to estimate θ = µ1 − µ2. With
the ANOVA model used for a two-period crossover study, σ2

θ̂
= 2

n σ2 is estimated
by 2

n s2, where, s2 is the MSE from the ANOVA with associated d.f. ν = n− 2.
Westlake’s (1972, ’76, ’88) approach computes a 100(1−2α)% confidence interval

for θ which is symmetric around the observed θ̂. With the notation described before,
distribution of (θ̂ − θ)/σ̂θ̂ is used to construct the symmetric interval:

(
θ̂ − σ̂θ̂ · tν;α, θ̂ + σ̂θ̂ · tν;α

)
(1)

where tν;α, (now onwards will be denoted as tα for notational convenience), is
the upper α cut-off point from the t-distribution with associated d.f. ν. The
test declares bioequivalence if the entire confidence interval (1) falls within the
target interval (U, L); and rejects bioequivalence otherwise. While the simplicity
of the procedure is attractive, it opens criticism for impractical rejections of the
bioequivalence in marginal cases as illustrated below.

Illustrative Example: Suppose that a 20% acceptance rule is to be used on the
ratio of AUC means to declare bioequivalence. Thus, the target interval on the ratio
is given by (0.80, 1.25). With a usual log-transformation to the AUC endpoint, the
target interval for the difference becomes (-0.223, 0.223). Also suppose that a two-
period crossover design was used with n = 15. Now, with an observed mean and
standard error (both in the log-scale) of 0.10 and 0.06, respectively, the symmetric
95%1 confidence interval (1) is given by (-0.03, 0.23). This confidence interval rejects
the bioequivalence as it just overlaps with the boundary of the target interval.
However, this rejection is not so clear from practical viewpoint. The observation
suggests that with a very high probability the true mean θ is well within the target
range. In the following we develop a rejection rule which avoids this type of marginal
rejection.

1Because much current interest in clinical comparability methods exists and uses bioequivalence
methodology, the more stringent α = 0.025 level is used for the examples. The same feature of
the proposed method in this paper apply similarly to α = 0.05 level tests of bioequivalence using
the conventional 90% confidence intervals.
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3. Proposed Method on Testing Bioequivalence

Other methods also available in the literature to test bioequivalence are the two
one-sided test (TOST), BHM method (Brown, Hwang and Munk, 1995), and the
new union intersection test (IUT) method by Berger and Hsu (1996). Berger and
Hsu also compared these methods. While both BHM and the IUT methods were
shown to have more power than the TOST method, none of these two methods is
uniformly more powerful than the other. More importantly, there is no minimum
power guaranteed for any of these tests which is essential from both the manufac-
turer and regulatory points of view. In the proposed method described below we
provide a confidence interval based method with a guaranteed minimum power.

There are several choices in obtaining a confidence interval with a fixed confi-
dence level. A general definition that covers all such confidence intervals for θ with
a 100(1− 2α)% confidence level is given by

(
θ̂ − σ̂θ̂ · tα1 , θ̂ + σ̂θ̂ · t(2α−α1)

)
, (2)

for any α1, (0 < α1 < 2α). The symmetric confidence interval given by (1) is only a
special case of (2) with α1 = α. From the sampling theory viewpoint, the symmetric
interval is motivated from producing the smallest length confidence interval with a
fixed α-level. However, in the bioequivalence trials the acceptance or rejection of
the bioequivalence only depends on whether or not the entire interval is within the
target range. The width of the confidence interval becomes irrelevant as soon as
the interval overlaps with any boundary of the target range. Thus, the symmetric
confidence interval (1) may not always be the practical choice for bioequivalence
trials.

In the bioequivalence trial, we are required to verify whether the observed distri-
bution guarantees a minimum pre-specified probability on the target range. We can
use any of the confidence intervals of the form (2) suitably to declare the bioequiv-
alence. It still would keep the overall type-I probability small. However, note that
the testing procedure and hence the power of the test is determined with the choice
of the α1. Therefore, a prudent choice on α1 in (2) should be made to maintain
a desirably high power. Even with this restriction, we can avoid some impractical
rejections illustrated in the previous section.

How to choose α1? It can be shown from the derivations in the appendix that
the power of detecting bioequivalence using a confidence interval of the form (2) is
given by

Ψ(θ) = P

(
L− θ

σ̂θ̂

+ tα1 < Tν <
U − θ

σ̂θ̂

− t(2α−α1)

)
. (3)

Thus, although α1 can be any where from 0 to 2α to satisfy (2), the choice of
α1 influences the power Ψ(θ). Therefore, we should choose α1 which will assure a
guaranteed power. For fixed n and a predefined minimum power of 1−β, we define
the set Iα1 as the candidate values of α1 which satisfies

Ψ(θ) ≥ 1− β, (4)
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for some θ ∈ (L, U). Thus, bioequivalence will be detected if for some α1 ∈ Iα1 the
confidence interval falls within the target range (L,U). In other words, we declare
bioequivalence if there exists valid α1(0 < α1 < 2α) so that the confidence interval
(2) falls within the equivalence range (L, U) and α1 satisfies (4). We can avoid
computing Iα1 in the practical implementation using the algorithm given below.

Algorithm 1.

0. BEGIN

If θ̂ is outside the target range

then reject bioequivalence and go to Step III.

else go to Step I.

I. If θ̂ is closer to right boundary (i.e.U − θ̂ ≤ θ̂ − L),

then solve θ̂ + σ̂θ̂ · t(2α−α1) = U for α1 in (0, 2α);

else solve θ̂ − σ̂θ̂ · tα1 = L for α1 in (0, 2α).

EndIf

II. If a valid solution exists from the above, say α̂1,

then { obtain from (3) the power curve Ψ(θ) at α1 = α̂1.

If the curve exceeds the minimum value 1− β at some θ ∈ (L, U),

then accept the bioequivalence and go to Step III.
else reject bioequivalence and go to Step III.}

else (i.e., if no valid solution exists from Step I) reject
bioequivalence and go to Step III.

EndIf

III. STOP

To compute the power in step II, we have the option of using the observed
standard error estimate (σ̂θ̂) or using the historical estimate which was used at the
design stage to power the study appropriately. As long as the procedure clearly
describes which one to be used, either procedure should be acceptable.

Illustrative example: Working with the same example of Section 2, note that
we can avoid the marginal rejection by adopting the above confidence interval pro-
cedure. Straightforward calculation shows that the 95% confidence interval with
α1 = 0.01852 becomes (-.039, 0.222) and therefore it fits within the target range to
claim the expected bioequivalence. Note that according to our rule, we still require
to verify that this choice of α1 will produce more than 80% power for some θ within
the target range. Using σ̂θ̂ = 0.06, α1 = 0.01852, and n = 15, the power curve Ψ(θ)
computed on the interval (-0.223,0.223) by using the expression from (3) intercepts
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the 80% level. Hence we declare bioequivalence. Also note that, the chance of false
rejection in this case is bounded above by max(α1, 2α − α1) = 0.03148 which is
marginally higher than α = 0.025 of the symmetric case. While this slight increase
in the chance of false acceptance has no real implication, declaring bioequivalence
makes a practical difference towards a more intuitive choice.

As described in the algorithm and as illustrated above, our testing method
followed two major steps to conclude bioequivalence. Firstly, we required an α1

so that the entire confidence interval fits within the target range. Secondly, we
required a guaranteed 80% power with that α1.

Sometimes we may have an α1 so that the confidence interval fits within the
acceptance range, but we may not have enough power to accept bioequivalence.
This draws a sharp contrast with the Bayesian method proposed by Rodda and
Davis (1980). That approach would accept bioequivalence if such an α1 exists
without paying any regard to the power. However, note that while we use an
asymmetric procedure to fit the confidence interval within the stipulated range, the
type I error probability increases slightly. Thus a guaranteed power warrants such
compromise which was absent in the Bayesian approach mentioned above. Following
is an illustration where the power requirement is not met and hence we failed to
conclude bioequivalence, and must be so.

Suppose that we observe the same mean (= 0.10) and slightly increased standard
error (= 0.063), then at α1 = 0.01258 the confidence interval becomes (-0.059, 0.222)
and thus fits within the target range. Note that with α1 = 0.025 (symmetric case),
the power curve exceeds the 80% level (power at 0 is approximately 81%). However,
the power curve stays below the required 80% level for the computed α1 = 0.01258.
Thus we cannot declare bioequivalence with this α1. In fact, in this case, there
does not exist any α1 which meets the power requirement and at the same time
fits the confidence interval within the target range. Hence we can never declare
bioequivalence in this case.

4. Sample Size Determination

New methods for bioequivalence testing described in previous sections are im-
portant from a practical point of view. Consequently, from the manufacturer’s point
of view it is important to find out the minimum sample size in order to implement
the procedure appropriately.

Our goal in this section is to find the minimum sample size to declare bioequiv-
alence with guaranteed minimum power of 1− β when the target interval (L,U) is
not necessarily symmetric and/or the investigator believes that, or wants to design
as if, a non-zero difference may exist between the formulations. Let us define the
sample size n as the total number of subjects in the study design. Note that finding
the minimum sample size requires explicit expression of the standard error term
showing it’s relationship with the sample size. We will therefore use the common
two-period crossover design where the relationship is σ̂2

θ̂
= 2

n s2. While this specific
design is important from a practical point of view, the method is easily extendible
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to other designs as long as σ̂θ̂ ∝ n−1/2. Also note that at the design stage we do
not observe the sample variance and therefore we use a historical estimate or guess
for s2. Therefore, to distinguish this estimate with the unobserved s2, it will be
denoted by σ̂2, and whence σ̂2

θ̂
will be 2

n σ̂2, for rest of this section.
In the special case of θ = 0 and symmetric acceptance range (−∆, ∆), (i.e.,

0 < −L = U = ∆), computation is available for the method described in Section 2
(see Westlake, 1988) and is given by the following iterative equation

n ≥ 2(tν;α + tν;β/2)2σ̂2

∆2
(5)

This minimum sample size guarantees a power of (1−β) if no true difference exists
between the formulations (i.e. when θ = 0). However, in many practical situations,
a real non-zero difference exists between the formulations which can still be well
within the equivalence range. Therefore, the minimum sample size computed at
θ = 0 may no longer assure the desired power of the test. Clearly, we need more
samples to maintain the same power as the real θ approaches either boundary of the
target range. Thus in case a non-zero difference is warranted at the design stage, it
will be useful to adjust the minimum sample size accordingly.

Another practical concern relates to using the symmetric confidence interval. As
discussed in Section 3, using the general form given by (2) rules out some imprac-
tical rejections of the symmetric interval approach. An expression of the minimum
sample size assuring a pre-specified power is obtained in the following theorem:

Theorem 1. The minimum sample size n? with a guaranteed minimum power
of (1 − β) at a pre-specified θ ∈ (L, U) is given by [ñ?] (minimum integer ≥ ñ?),
where

ñ? = min
0<α1<2α

0<β1<β

2(tα1 + tβ1)
2

(L− θ)2
· σ̂2 (6)

subject to

tα1 + tβ1

t(2α−α1) + t(β−β1)
=

|L− θ|
|U − θ| . (7)

The proof of the theorem is given in the Appendix. Note that the theorem
is obtained by solving a constrained MINIMAX problem (A.5) which is hard to
solve numerically. Also note that the minimum sample size in Theorem 1 actually
depends on the relative position of the user specified difference within the target
range. Thus, unlike the expression in (5), it adjusts for the plausible asymmetry of
the target range with respect to the specified value of θ.

In the special case when the stipulated θ is at the mid-point of the target range,
it is intuitive that a symmetric confidence interval should be used to maximize the
power. Indeed we see that from the following corollary.

Corollary 1. In case of θ = (L+U)
2 , the minimum sample size [ñ?] from (6)

is obtained at α1 = α and β1 = β/2.
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While we again defer the proof to the Appendix, it is immediately recognized
from the corollary that when θ is the mid-point of the target interval, the expression
(6) subject to (7) reduces to the following single expression

n?
0 =

[
2(tα + tβ/2)2

∆2
· σ̂2

]
. (8)

where ∆ is the half width of the target range. Note that the above expression is
identical to (5). Thus, sample size calculation for Westlake’s symmetric confidence
interval approach is obtained as a special case when a symmetric interval is used
and the study is powered at θ = 0.

Computation: While the Theorem 1 provides an understanding on the relation-
ship of the minimum sample size with the other user-specified parameters in the
problem, the expression is still in implicit form. Therefore, an iterative procedure
must be applied to obtain the minimum sample size. An S-Plus code was made
useful to implement the computation which is available on request from one of the
authors.

Figure 1: Minimum sample size n? with target range (-0.223, 0.223)

For illustration purpose we computed the minimum sample size n? for some
specimen input values and presented them in Figure 1 and Table 1. For optimal
method, a 80% power is guaranteed throughout these computations. In Figure 1,
we illustrate the increase in the value of n? when either the SD increases or the spec-
ulated difference θ approaches either boundary of the target range (-0.223, 0.223).
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Table 1: The minimum sample size using 95% confidence interval
with guaranteed 80% power to detect bioequivalence.

Optimal Method Usual Method
Power at θ Power at θ Power at θ

L U SD θ n? (using n = n?) (using n = n?) n?
0 (using n = n?

0)
-0.223 0.223 0.1 0.00 7 0.830 0.830 7 0.830

0.02 7 0.820 0.810 7 0.810
0.04 8 0.878 0.849 7 0.751
0.06 8 0.832 0.767 7 0.653
0.08 9 0.829 0.735 7 0.526
0.10 11 0.833 0.725 7 0.390
0.12 14 0.815 0.703 7 0.268
0.14 20 0.806 0.697 7 0.174
0.16 33 0.801 0.696 7 0.108

-0.223 0.223 0.15 0.00 12 0.812 0.812 12 0.812
0.02 12 0.801 0.792 12 0.792
0.04 13 0.818 0.787 12 0.735
0.06 14 0.805 0.742 12 0.644
0.08 17 0.823 0.736 12 0.531
0.10 21 0.813 0.710 12 0.409
0.12 29 0.812 0.711 12 0.295
0.14 43 0.807 0.706 12 0.200
0.16 72 0.800 0.700 12 0.128

-0.223 0.182 0.1 0.00 8 0.827 0.816 7 0.694
0.02 9 0.863 0.827 7 0.615
0.04 9 0.802 0.724 7 0.500
0.06 11 0.819 0.717 7 0.372
0.08 14 0.807 0.694 7 0.255
0.10 21 0.816 0.710 7 0.165
0.12 34 0.801 0.696 7 0.103
0.14 72 0.800 0.700 7 0.063
0.16 259 0.801 0.703 7 0.039

-0.223 0.182 0.15 0.00 15 0.838 0.828 12 0.669
0.02 16 0.834 0.796 12 0.601
0.04 18 0.826 0.756 12 0.502
0.06 21 0.801 0.703 12 0.390
0.08 29 0.805 0.702 12 0.282
0.10 44 0.807 0.706 12 0.191
0.12 75 0.804 0.704 12 0.122
0.14 160 0.800 0.701 12 0.075
0.16 579 0.800 0.702 12 0.044

As noted earlier, this acceptance interval comes from the usual log-transformed 20%
acceptance range. By back transforming this to the original scale we obtain (0.80,
1.25). However, sometimes the stipulated 20% target range is (0.8, 1.2) which is
symmetric in the original scale but not in the log-scale. In the log-scale it becomes
(-0.223, 0.0.182). Table 1 computes n? for each of theses two acceptance intervals
and different choices of θ and SD. Both figure and table demonstrate that the n?

is smallest when the difference is the mid-point of the target range and it grows
slowly at the beginning when the true difference approaches either boundary of the
target range. Thus, in many situations when the investigator suspects, or wishes to
design for, a small departure from the bioequivalence, a relatively small pay off in
terms of increase in the sample size will guarantee the desired power. Table 1 also
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compares the proposed optimal method results with the usual symmetric approach.
Under the usual method we first obtain the power of the test using the minimum

sample size, n?, of the optimal method. With the symmetric acceptance region of (-
0.223, 0.223), we have the same power at θ = 0 in either method. This demonstrates
that the symmetric interval method is a special case of the proposed optimal method
when the true θ is at the mid-point of the acceptance range. Notice that when the
asymmetric acceptance range of (-0.223, 0.182) is used, θ = 0 is no longer at the
mid-range value. Consequently, there is less power at θ = 0 in the usual method
as compared to the optimal method. However, we also notice that, as long as the
true θ is very close to the mid-point of acceptance range, the usual approach still
guarantees 80% or more power. A more drastic drop in the power is observed
with this procedure if the conventional minimum sample size n?

0 is used. Since
the computation of n?

0 ignores the relative position of θ within the target range, it
remains the same at different values of θ. Thus, even if we want to stick to the usual
procedure, it is always safe to use the sample size n?. Finally note that, although
this shows a gain in power over using n?

0, it does not always satisfy the minimum
power requirement. In order to achieve that, we should use the proposed optimal
method.

5. Discussion

Our proposed method for constructing bioequivalence tests as described in Sec-
tion 3 relaxes the symmetry condition around the observed estimate of the difference
without compromising the overall type-I error-probability or power. Thus, if a 95%
confidence interval is used then the overall type I error-probability is always bounded
by 5% to conform with the regulatory requirement. To avoid marginal unintuitive
rejection, this type I probability in the proposed method can exceed slightly from
α = 0.025, however, that is thought to be only a small compromise for increased
power. This adjustment range is usually tight around 0.025 unless the width of the
confidence interval is very tight as compared to the width of the target range. On
the other hand, when the interval width is very small compared to the length of
the acceptance range, it is unlikely that the adjustment will make any difference in
the final inference. Finally, the proposed method guarantees a minimum power for
using the adjusted interval which is an added assurance to both regulatory agencies
and manufacturers.

Minimum sample size described in Section 4 guarantees a pre-specified power
at some user specified difference between the formulations. As noted in the in-
troduction it is unlikely that the bioavailabilities of two different formulations are
exactly the same. From a practical point of view, therefore, appropriate consider-
ation should be given to this fact throughout this study, especially at the design
stage. For example, the commonly used sample size guarantees a power at exact
bioequivalence. This sample size often does not have enough power to detect bioe-
quivalence with a clinically insignificant departure from exact equality. As a result,
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it becomes harder to detect bioequivalence from this study, and failure of any of
these expensive studies is certainly undesirable to the manufacturers.

The odds of detecting bioequivalence could be improved with a prudent choice
on the sample size. Often the investigator can provide with some realistic guesses
on the difference which may exist between the formulations. Consequently, the
method described in Section 4 can be used to compute the minimum sample sizes.
Like other statistical procedures, we need to decide on the testing method before we
observe the data. Since the optimal method has greater power than usual method
to detect bioequivalence, going with the optimal method seems to be the rational
choice. With a speculated non-zero difference, if it requires an unrealistically large
number of subjects to detect bioequivalence, then it may be wise for the investigator
to retreat from the study. Some other times, running a successful bioequivalence
trial can be far more important than some modest increase in the sample size.
In any case, the computations of these minimum sample sizes will be helpful to
investigators in making an informed choice on the sample size and whether to run
the study.

Appendix

Proof of theorem 1. Let the power of testing bioequivalence for any θ be
denoted by Ψ(θ) = P (A|θ), where A be the event that the confidence interval (2)
is within the equivalence range (L, U) for some α1, (0 < α1 < 2α). Using routine
algebraic simplification and noting that θ̂−θ

σ̂θ̂
∼ Tν , the Student’s t-distribution with

ν d.f., the power Ψ(θ) is given by

Ψ(θ) = P

(
L− θ

σ̂θ̂

+ tα1 < Tν <
U − θ

σ̂θ̂

− t(2α−α1)

)
. (A.1)

To guarantee a minimum power of 1−β, using the above equation, there must exist
β1, (0 < β1 < β) such that

L− θ

σ̂θ̂

+ tα1 ≤ −tβ1 and
U − θ

σ̂θ̂

− t(2α−α1) ≥ t(β−β1). (A.2)

Now, when σ̂θ̂ =

√
2
n

σ̂, (in a two-period crossover trial), then (A.2) can be expressed
as

n ≥ max
{

2(tα1 + tβ1)
2

(L− θ)2
,

2(t(2α−α1) + t(β−β1))
2

(U − θ)2

}
σ̂2. (A.3)

The required minimum sample size, therefore, will be obtained by minimizing the
iterative in equation (A.3) with respect to α1 and β1 and will be given by [ñ?]
(minimum integer ≥ ñ?), where

ñ? = min
0<α1<2α

0<β1<β

[max {h(α1, β1|θ, L, ñ?), h(2α− α1, β − β1|θ, U, ñ?)}] σ̂2,(A.4)
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where h(γ1, γ2|θ,K, n) = 2(tγ1+tγ2 )2

(K−θ)2 (note that tγi
implicitly includes n through the

d.f.).
Suppose that the solution of (A.4) is attained at (α?

1, β?
1). Then we claim that

h(α?
1, β

?
1 |θ, L, ñ?) = h(2α− α?

1, β − β?
1 |θ, U, ñ?) holds, which is equivalent to

tα?
1

+ tβ?
1

t(2α−α?
1) + t(β−β?

1 )
=

∣∣∣∣
L− θ

U − θ

∣∣∣∣ . (A.5)

If the claim is true, the minimization problem in (A.4) reduces to the minimization
of any one of the two h(·) functions :

ñ? = min
0<α1<2α

0<β1<β

[
2(tα1 + tβ1)

2

(L− θ)2

]
σ̂2 (A.6)

subject to (A.5). Hence the assertion of the theorem will follow. Therefore it
remains to prove that the claim is true. Suppose that the claim is false; then for
some fixed L,U, and θ, there exists a solution ñ? attained at (α?

1, β
?
1) such that

d(α?
1, β

?
1) 6= 0 where d(α1, β1) = h(α1, β1|θ, L, ñ?) − h(2α − α1, β − β1|θ, U, ñ?).

Without loss of generality if we can assume that d(α?
1, β

?
1) > 0 then the solution

ñ? using (A.4) will be given by ñ? = h(α?
1, β

?
1 |θ, L, ñ?) σ̂2. But, since d(α1, β1) is

continuous with respect to α1 and d(α?
1, β

?
1) > 0, there exists an ε(> 0) such that

d(α1, β
?
1) > 0 for any α1 ∈ (α?

1 − ε, α?
1 + ε). In particular, d(α?

1 − ε
2 , β?

1) > 0.
However, by definition, h(α1, β

?
1 |θ, L, ñ?) is increasing with α1 and hence

h(α?
1 −

ε

2
, β?

1 |θ, L, ñ?) σ̂2 < h(α?
1, β

?
1 |θ, L, ñ?) σ̂2 = ñ?. (A.7)

Thus, (A.7) together with d(α?
1− ε

2 , β?
1) > 0 guarantees existence of a lower solution

than ñ? at α1 = α?
1 − ε/2 and β1 = β?

1 which contradicts that ñ? is solution to
(A.4). Hence, the claim is true and the theorem follows.

Proof of corollary 1. We first minimize the quantity (tα1 + tβ1) subject to

tα1 + tβ1 = t(2α−α1) + t(β−β1) (0 < α1 < 2α, 0 < β1 < β). (A.8)

Using Lagrange’s multiplier, λ, and taking partial derivatives with respect to α1

and β1, respectively, we obtain

∂tα1

∂α1
− λ

(
∂tα1

∂α1
− ∂t(2α−α1)

∂α1

)
= 0 and

∂tβ1

∂β1
− λ

(
∂tβ1

∂β1
− ∂t(β−β1)

∂β1

)
= 0(A.9)

Now denoting F (·) and f(·) as distribution function and density, respectively, of
the underlying t-distribution, we have for any (0 < p < 1), ∂F (tp)

∂p = f(tp) · ∂tp

∂p ;

also, since F (tp) = 1− p, we get ∂tp

∂p = −1/f(tp). Thus we obtain from (A.9) upon
simplification

1/λ = 1 + f(tα1)/f(t(2α−α1)) and 1/λ = 1 + f(tβ1)/f(t(β−β1)). (A.10)
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Eliminating λ from equations in (A.10) we obtain the required condition for the
minimization:

f(tα1)/f(t(2α−α1)) = f(tβ1)/f(t(β−β1)). (A.11)

Notice that (α1, β1) = (α, β/2) satisfies above and (A.8) hence a solution. To
prove that this solution is unique, suppose that there exists α1 6= α as a solu-
tion to the minimization problem. Without loss of generality, we assume that
α1 > 2α − α1. Since the cut-off point decreases with the increase in its argu-
ment, then applying (A.8), we will have β1 < β − β1. However in that case,
f(tα1) > f(t(2α−α1)) and f(tβ1) < f(t(β−β1)) which contradicts the requirement
(A.11). Hence, the constrained minimization is attained uniquely at (α1, β1) =
(α, β/2).

Finally, when θ = U+L
2 then the equality constraint in Theorem 1 reduces to

(A.8). Since
2(tα1 + tβ1)

2

(L− θ)2
σ̂2 is an increasing function of (tα1 + tβ1), the required

minimum sample size n? will attain where (tα1 + tβ1) is maximized and hence the
proof follows.

Acknowledgments. The authors thank Professor Pranab Sen and Professor Bimal
Sinha for their useful comments on the article.

References

Anderson, S. and Hauck, W. W. (1983), A new procedure for testing equivalence in compar-
ative bioavailability and other clinical trials, Communication in Statistics - Theory and
Methods, 12, 2663-2692.

Berger, R. L. and Hsu, J. C. (1996), Bioequivalence trials, intersection union tests and equiva-
lence confidence sets (with comments and rejoinder), Statistical Sciences, 11,
283-319.

Brown, L. D., Hwang, J. T. G., and Munk, A. (1995), An unbiased test for the bioequivalence
problem., Tehnical Report, Cornell Univ.

Rodda, B. E. and Davis, R. L. (1980), Determining the probability an important difference in
bioavailability, Clinical Pharmacology and Therapeutics, 28, 247-252.

Westlake, W. J. (1988), Bioavailability and bioequivalence of pharmaceutical formulations, in
Peace, K. E. (ed.), Biopharmaceutical Statistics for Drug Development, Mercel Dekker,
New York, 1988, 329-352.

−−−− (1981), Comments on Bioequivalence testing – A need to rethink, Biometrics, 37, 591-
593.

− − −− (1979), Statistical aspects of comparative bioavailability trials, Biometrics, 35,
273-280.

−−−− (1976), Symmetrical confidence intervals for bioequivalence trials, Biometrics, 32, 741-
744.

Saurabh Mukhopadhyay and James A. Bolognese
Clinical Biostatistics
Department at Merck Research Laboratories
P.O. Box 2000, RY 33-404
Rahway, NJ 07065-0900, U.S.A.
E-mail: saurabh mukhopadhyay@merck.com


