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SUMMARY. Multi-resolution analysis is used here to derive a wavelet smoother as
an estimated regression function for a given set of noisy data. The hierarchical Bayesian
approach is employed to model the regression function using a wavelet basis and to perform
the subsequent estimations. The Bayesian model selection tool of Bayes factor is used to
select the optimal resolution level of the multi-resolution analysis. Error bands are provided
as an index of estimation error. The methodology is illustrated with two examples and a

simulation study.

1. Introduction

We consider the problem of fitting a general regression function to a set
of observations. The observations are assumed to arise from a real valued
regression function defined on an interval on the real line. Specifically, we
consider the model

yi = f(x;)+ei, i=1,...,n, andx; € T, (1)

where € = (e1,¢€9,...,6n)" ~ N(0,0%I), 0? unknown and f(-) is a function
defined on some index set 7 C R!.
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Proceeding further, we embed this problem in the same set-up as in
Angers and Delampady (1992) (AD, hereafter), but instead of the Taylor
series expansion employed there, we apply the multi-resolution wavelet anal-
ysis. This leads to a representation for f as a linear combination of a set of
wavelet functions instead of the sum of a polynomial and a remainder term in
AD. This also implies that the regression function f need not be very smooth
as was assumed in AD. However, unlike other approaches based on wavelets,
we do not transform the data using a discrete wavelet transform. Conse-
quently, we continue to work with the noisy data y; and not their estimated
wavelet coefficients. Also, by employing an appropriate covariance structure
for the wavelet coefficients, we reduce the total number of parameters which
need to be finally estimated in order to obtain a wavelet smoother.

In the following, we shall first develop a model for the regression func-
tion, and then using the hierarchical Bayesian approach we shall derive the
Bayesian wavelet smoother. In section 2, we develop a model for f us-
ing a wavelet based decomposition. The hierarchical Bayesian approach is
then used to describe the prior distribution of the involved parameters. The
Bayesian wavelet smoother and its error bands are derived in section 3.
Section 4 describes how Bayes factors can be used to determine the most
parsimonious model for the given data. Our final results and the method-
ology are illustrated with two real life data sets in the following section. A
simulation study is included to compare the strength of our methodology
with that of some of the competitors. A few possible extensions are also
indicated here. Finally, the strength of our approach and some comparisons
with other approaches are mentioned in the final section.

2.  Description of the Model

First, we decompose the regression function into a linear combination
of a set of basis functions. We begin with a compactly supported wavelet
function 1 € C*, the set of real-valued functions with continous derivatives
up to order s. Note then that any function f in L£5(R) has the wavelet
decomposition

fle) = > axgr(@)+D D Birthir(x), (2)
|k|<Ko 320 |k|<K;
with
$r(x) = Pz —k)
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and

biwlz) = 22¢p2r —k),

where K is such that ¢y (x) and t;(x) vanish on 7 whenever |k| > Kj,
and ¢ is the scaling function (‘father wavelet’) corresponding to the ‘mother
wavelet’ 1. Such K;’s exist (and are finite) since the wavelet function that
we have chosen has compact support. For any specified resolution level J,
we have

J %)
fl@) = > ardr(@) +> D Biubin) + D Y Bitik(z)

<Ko =0 |K<K; J=TH1 [k <K;
= gs(x) + Ry(z), (3)

where

J
9](1') = Z ak¢k($)+z Z ,Bjk’l/)j,k(I), and

|k|<Ko 720 |k|<K;
Ri(z) = Y. Y Bitjplz) (4)
=T+ KI<K;

Therefore, g7+1(z) — g7(z) = Rj(x) — Ry41(x) for any resolution level J.
Delyon and Juditsky (1995) consider a similar model but adopt an approach
for analysis which is very different from ours. Some other good references
for general wavelet related material and applications are Daubechies (1992),
Hardle et. al. (1998), Mallat (1998), and Ogden (1997).

2.1. First stage prior model and bound on J. To proceed further, first, the
above shown wavelet decomposition is exploited to give the prior model for
f in (1) using the hierarchical Bayesian approach. The strength of wavelet
basis over others is that wavelets can identify local features much more ef-
fectively and efficiently. Note in the representation (3) that there are ¢
functions to detect the global features, and once this is done, there are the
1 functions to check for local details. Such a representation is especially
useful when we do not assume that the regression function has any global
smoothness features, and hence one may not find ‘spline type models’ very
appropriate.

We would like to mention here that, unlike many standard wavelet based
procedures, we do not need either the number of observations to be an
integer power of 2, or equally spaced observations. The hierarchical Bayesian
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approach that we employ can handle general situations quite efficiently. For
this reason, unlike most of the other Bayesian approaches to wavelet based
smoothing, we do not see the need to apply the ‘discrete wavelet transform’
first and then work with the wavelet coefficients assuming that they are
independent observations. Details on related Bayesian approaches to wavelet
based function estimation can be found in Vidakovic (1998) and Miiller and
Vidakovic (1999).
Note that at the resolution level J, equation (1) can be rewritten as

yi = gs(®) +ni+ e, (5)

where n; = Rj(x;). Since there is usually very little information available
in the likelihood function to estimate the (infinitely) many parameters S3;,
g > J, |k| < K; (arising from the higher levels of resolution), one will
need to engage in the difficult task of eliciting a very informative prior on
these parameters if the 7; are to be estimated. This will then attract prior
robustness issues as well. Therefore, we adopt an approach wherein these
remainders 7; are clubbed with the measurement errors ;. In this way, our
approach will be truly Bayesian, but at the inference stage we can treat these
7; as nuisance quantities and eliminate them by integrating out (rather than
estimating) the corresponding (.

Even after treating the 7;’s as nuisance parameters, we are still left with
the problem of estimating the parameters, oy and g for |k| < K; and
j=0,1,...,J. Let lg, I, and Ix be the length of the support of (-), ¢(-)
and the length of 7 respectively. Then the total number of parameters, a’s
and (’s which need to be estimated (from the data and our prior knowledge)
is bounded by

Ix27 T+ Tl + 1) + (I + 1y +2). (6)

Since the total number of observations is n, J should be chosen such that the
quantity in (6) is less than n. Failure to do so can make the design matrix
(see next subsection) singular and hence the estimated values of oy, and S,y
may then be strongly dependent on the prior.

As an example, consider the Daubechies wavelet of order p (¢f. Daubechies,
1992). The support of 1) and ¢ then are, respectively, (0,2p—1) and (1—p, p),
so that [, =4 = 2p — 1. Suppose also that 7 = (0,1) and so [x = 1. Then
we have

dp(z) #0 — 0<z—k<2p-—1
— z—-2p+1<Ek<uz.
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However, since 0 < z < 1, the maximum possible value for k£ is 1 — (—2p +
1) + 1 =2p+ 1. Similarly, for any given j,

Pie(@) #0 <= 1-p<2z—k<p
— Vr—p<k<Vr+p-1.

This interval is contained in (—p,2’ + p — 1). Hence, there are at most
29 +p—14+p—1 = 2 4 2p possible values for k at any given level j.
Consequently, the total number of parameters to be estimated in equation (5)
is bounded by

J
. 2J _
2 1 27 +2 = 2 1 2p(J +1
P++§(+P) p+1+S—+2p(J +1)
= 2/ 4 2Jp+4p

1x2" + J2p—1+1)+2p—1+2p—1+2)
= Ix27 + Ty +1) + (I + 1y +2).

To provide a joint prior distribution on oy and f3;; we assume that they
are all independent normal random variables with mean 0. The prior vari-
ance of oy, is assumed to be 72, whereas to accommodate the decreasing effect
of the ‘detail’ coefficients 35, we assume that their variance is 72/2%%, (cf.
Abramovich and Sapatinas (1999) for further justification for the choice of
the first stage prior variances). Once a joint prior distribution is specified
for 02 and (the hyperparameter) 72, the prior model is complete. Note, fur-
ther, that since we assign a second stage prior on the variance factor 72 of
the a and S coefficients, their marginal prior distribution will no longer be
normal, but a heavier tailed distribution ensuring a certain degree of prior
robustness to our wavelet smoother (cf. Berger, 1985).

2.2. First stage posterior densities. Let v = (o/, 8') where a = (o) |x)< K,
and 8 = (5jk)0§j§J,|k\§Kj- The prior specified above indicates that |72 ~

N(0,7%T) where
r— Dbryy1 0 ’
0 A,

where Mg = Z}']:o@K j + 1) and with A being the variance-covariance ma-
trix of 8 (which is also diagonal, with the diagonal entries as specified in
the previous paragraph). Also (n1,...m,) |72 ~ N(0,7%2Q,), where Q,, is
formed from the variance structure of {ﬁjk}J+1§j<oo,|k‘§Kj. Since the [
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are assumed to be independent, the (i,1) entry of @, is given by

(@Qn)iy = 7 *Cov(n;,m)

= 772Cov Z Z Bikbjk(zi), Z Z Bra¥pq (1)

J>J+1 |k|<K; p>J+1|q|<K;

— 12 Z Z Z Z Cov(ﬁjk,ﬁpq)¢jk($i)¢pq(xl)

G2+ p2 I+ [k|<K; |q|<K;

= Z Z 27254 () (1)

3> J+1 |k <K;

Since the v function is bounded, it can be shown easily that each entry of
Q@ is bounded by

(1 + 1) (max. 2(2))

|(Qn)i,l 22Js(225 — 1)

<

Hence, the covariance matrix of (n1,...,7n,) is well defined. In the last
section a sensitivity study on the choice of @, is also discussed to dispel any
fear that our choice of ), may be unduly influencing our wavelet smoother.

Let X = (9',5") with the ith row of ®' being {¢k(xi)}1k\gK0 and the
ith row of S’ being {¢jk(xi)}6§j§J,|k\gK]-' Then we obtain the following

structure. Given 7, 02 and 72, we have the following linear model for the
observation vector Y = (yi,...,yn)"

Y =Xv+u,

where u = n+¢ ~ N(0,%) with ¥ = 02I, + 72Q,. This follows from the
fact that

Yiy,m,0%,7% ~ N(Xvy+n,0%L,), (7)
77|T2 ~ N(0a7'2Qn)-

Note that this model is similar to the set-up in AD and to an extent
also similar to that in Angers and Delampady (1997), but unlike in those
articles, here we do not assume that the regression function is necessarily very
smooth. A major departure in this paper, however, is that the remainder
terms (here denoted by (71,...,7,)") are treated as nuisance parameters. In
fact, since wavelet basis can approximate any function of £9(R), we do not
need to complement the basis functions as in AD using the remainder terms.
They only appear to complete the model instead.
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From (7) and using standard hierarchical Bayes techniques (¢f. Lindley
and Smith, 1972) and matrix identities (¢f. Searle, 1982), it follows that

Y|o?, 7> ~ N(0,0%I, + 7° (XTX'+ Q,)), (8)

7Y, 0-277—2 ~ N(AY,B), (9)

where

A = 720X (021, + 7% (XTX' + Q) ",
B = 7T —7'TX' (0L, +7° (XTX' +Q,)) ' XT.
In order to proceed to the second stage calculations, some algebraic sim-
plifications are needed (¢f. AD). Spectral decomposition yields XI'X'4+Q),, =

HDH', where D = diag(dy,ds,...,d,) is the matrix of eigenvalues and H is
the orthogonal matrix of eigenvectors. Thus,

o’y +7° (XTX'+Q,) = H(c’I,+7°D)H’
= 7°H (vI, + D) H',

where v = 0% /72. Using this spectral decomposition, the marginal density
of Y given 72 and v can be written as

1 1
(2772)n/2 det (v, + D)/2

m(Y | 7%,0)

1
X exp {—FY’H(vIn + D)—IH’Y}

1 1 1 < &2
= - 7 1
Crry P T v+ ) 72 { 57 2t d }( )

=1

where s = (s1,...,s,) = H'Y.
3. Second Stage Prior and Estimation of ¢;(z)

To derive the wavelet smoother, all that we need to do now is to eliminate
the hyper- and nuisance parameters from the first stage posterior distribu-
tion, by integrating out these variables with respect to the second stage prior
on them. Since it is well known (cf. Berger, 1985) that the final Bayes esti-
mator does not depend crucially on the second and higher stage hyper-priors,



294 JEAN-FRANCOIS ANGERS AND MOHAN DELAMPADY

these priors can be chosen to simplify computations. Accordingly, the priors
on 72 and v are chosen as in the next subsection.

An alternative method would be to use an empirical Bayes approach
and to estimate o and 72 from equation (8) and to replace o2 and 72 by
their estimates in equation (9) to approximate 4. In order to maximize
equation (8) with respect to 02 and 72, we proceed as follows:

1. Let v = 02 /72.

2. Solve, in terms of v,
n

2 n
=0.
— (U—i—di)ZZ(v—Fdj)

i j=1

Denote this solution by .

3. Compute

Although this approach is easier to implement than the one used in the
rest of this paper, it underestimates the variance of the wavelet estimator
Y = X7.

3.1 Prior on 72 and v. If one chooses ma1(72) o (72) ¢, the subsequent
integrations with respect to m1(72 | Y,v) needed to compute the Bayes
estimator of ¢g;(z) and its posterior variance, can be handled analytically.
Hence the numerical integral, unavoidable in a hierarchical Bayesian model,
will be reduced to a one dimensional integral.

Furthermore, with this choice of prior on 72, the marginal prior on v will

have the form
m . (m/2)+c—1
e (3E)
i=1 °

where I'; is the 7th diagonal entry of I' and m denotes the maximum num-
ber of parameters to be estimated (¢f. equation (6)). This prior density
corresponds to the limiting case of a multivariate Student’s-¢ density. Thus
we obtain a prior having heavier tails (as recommended in Vidakovic, 1998)
than the prior model proposed in Abramovich and Sapatinas (1999).
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To arrive at the (second-stage) prior on v we argue as follows. Recall that
v = 0?/72. Tt is then the ratio of two variances — the ratio of the variance
of the error terms (g;) to the prior variance of . It seems then ‘natural’
to model this ratio using an F' distribution with a and b degrees of freedom.
In order to be as noninformative as possible, a and b are chosen such that:

2 u—
1. the prior variance of v (— 2b? (a+b—2)

= m) is mﬁnlte,

2. the Fisher information number (— a?(b+2)(b+6)

= m) 1S minimum,

b(a—2)
a(b+2)

3. the prior mode <: ) is greater than 0.

This can be done by choosing 2 < b < 4 and a = 8(b+2)/(b—2). Let ma2(v)
denote the resulting prior density.

Once the second stage priors are specified, using equation (9) and taking
the expectation with respect to 72, we have that

¥=TX'HE|[(vl, + D) " |Y]s, (11)

where the expectation is taken with respect to

00/2 n -1/2 , 5 2 —(n+2c)/2
Ta2(v | Y) b+ av)@n/ <H(U +dz’)> (Z " +dz’) :

i=1 1=1
(12)
(Note that in order for mao(v | Y') to be a proper density, ¢ should be chosen
such that ¢ < b/2.) Again using equation (9), the posterior expected loss
(under squared error loss) of y can be written as

1 “ s2
v Y) = E i_|y|r
w1 = e[yt
! rx'mE Xn: si (I, + D) ' | Y| H'XT
n+ 2c Z_:lv+di "
+E [F(v)y(v)" | Y], (13)

where y(v) = TX'H (vI,, + D) !s.

To compute these expectations, one can use several techniques. ;From
the many data sets that we have analyzed to obtain our wavelet smoother we
have strong empirical evidence showing that mee(v | Y) is unimodal with its
mode away from 0. Therefore, for data sets with moderately large number
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of observations one can use the Laplace approximation to evaluate equa-
tions (11) and (13) accurately. In order to do so, the first three derivatives
of h(v) = —n~'log(maz(v | Y)) are needed. They are given by

)

n

1 fa—2 a(a+b) 1 po(v
(1) - _ _
B () 2n< v b+ av izzlv+di+(n+2c)p1(v

~—

~—

n

1 fa—2 d*(a+b 1
HO) = 2—( = —u,ﬂ))g‘zm)

=1

p3(v) p2(v)\?
+2(n + 2c)p1 w) (n + 2¢) <p1 (v)) ) ,

1{a—2 a*a+b 1
K = _E( 3 _(bi;)g_Z(wdm)

1

+3(n + 2C)p4(v) —2(n + ZC)w(n + 2¢) (m(v) ) 3) ;

2

where py(v) =37, m

Since our computations involve only single dimensional integrals there is
no compelling need to resort to the above mentioned Laplace approximation.
Several versions of the standard Monte-Carlo approach can be employed
quite satisfactorily and efficiently also. We would like to note that in our
examples we have used both the Laplace approximation and Monte-Carlo,
and we do not see any major differences.

3.2 Prediction error. To evaluate our methodology we need to derive esti-
mation and prediction errors. Towards this, note that our wavelet smoother
yields V=X 7. From equation (13), the posterior variance of Y can be ex-
pressed easily as Var(Y) = XVar(y | Y)X'. However, if we want to obtain
the posterior variance of the predicted value of y for any given z, we proceed
as follows:

Var(y |Y) = Var(gs(z)+n+elY)

Var(gs(z) |Y)+ Var(n+¢|Y)

Var(a'y | Y) +Var(Eln +¢ | 0] | Y) +E[Var(n +¢ | o) | Y]
= 2'Var(y | Y)z + E[o® + m2q(z) | Y]

. [Z pra@]s? |y

v+d;

= z'Var(y |Y)r +

?

n 4+ 2c
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where ¢(z) = >, Z|k\<Kj(2_js¢jk($))2- Even though the predictive
density of y | Y is not normal (in fact, it is a mixture of normal densities),
we would still like to suggest using

yx2y/Var(y |Y) (14)

as error bands for § = g(z). These are not to be treated strictly as Bayesian
credible regions; instead, only as bands for reflecting uncertainty in g;(z).
These error bands are also given in our illustrations in the last section.

4. Bayes Factor and Choice of J

In this section we describe how the optimal level of resolution .J is to be
determined. As indicated above in (3), the choice of J provides a model for
the observations through the choice of the corresponding regression function.
Using equation (6) an upper bound on J can be derived as a function of the
length of the support of the ‘father’ and ‘mother’ wavelet functions and the
number of observations. Let J,,; be this upper bound on J.

Let M; denote the model, arising from (3) and (4), corresponding to the
resolution level [. Our task is to pick the best model for the given data from
the set of models:

M, 1=1,2,...,Jmas.

The well accepted method for deciding between two possible models M,
and My is to compute the Bayes factor of M, relative to Mp:

B(Ml :Ml/) W’

(15)
where m(Y|M;) denotes the marginal density of ¥ under the model M;,
i =1,I'. ;From (8) above it follows that, under M;, Y|o2,72 ~ N(0,02%I, +
72 (X;T,X] + Qn,)), where we have shown the dependence of X, I' and Q,,
on [ explicitly with subscripts. It follows then that

m(Y|M;) = /m(Y|Ml, o2, 72 dr(0?,7?),
where (02, 72) is the joint prior distribution on o2 and 72.

As in the previous section consider the spectral decomposition of X;I';X]+
Qng- Let D; and H; be such that X;I')X] + Q,; = H;D;H|. Also, let d;;
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be the ith diagonal element of D; and let s; = H;Y = (s;,1,...,5,,)". Then,
using equation (12), the marginal density of Y under M; can be expressed
as

0o /2 n e = Sl2' Sl
m(Y) = /0 b+ av)aibi/z <H(v + du)) <Z v +’dl,i> -

=1 =1

Consequently, to choose the best model M;, one needs to compute m;(Y)
forl=1,...,Jmaez. Let My .. be the reference model and define the Bayes
factors By = my(Y)/my, .. (Y) for i =1,..., Jmas. (Note that By, = 1.)
Then the best value of [ (equivalently, the best model M;) is the one for
which Bj is maximum. This method will be illustrated in the next section
when we analyze some data sets.

Therefore, if [, is such that B;, = max;<;<j,,., Bi, then the model con-
sidered would be

l« 0
@)= > argr(@) + > D Betbin(@) + > D Brtikl(x)

Ik|< Kol §=0 |k|<F; J=1 [|<K;

and -y is estimated by

4 =T, X] H.E(I, + D)™ | Y]s..

5. Illustrative Examples

5.1 Data analysis. We illustrate our methodology with two examples
in this section. Both these use real life data sets. We have chosen the
wavelet function ‘Daubechies of order 2’ for illustration. Other wavelet func-
tions have also been tried. For larger data sets we find that higher order
Daubechies wavelet functions provide increased smoothing. In these ex-
amples, the hyperparameters have been chosen after conducting sensitivity
analysis as described in AD.

ExAMPLE 1. This example is based on a data set from Ma and Zidek (1988).
The data represent the monthly precipitation (rain plus one-tenth of snow)
in inches from March 1965 to December 1966 in Vancouver (Canada).

In Figure 1, the posterior density of v is given. Note that even with only
22 observations and vague priors on 72 and v, this posterior distribution is
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very informative on v. Hence we are able to employ the Laplace approx-
imation (c¢f. Robert, 1994) to compute 7 and the corresponding posterior
covariance matrix.

1.2

1.0

Posterior density
0.6

0.4

T T T T T T 1
0.0 0.5 1.0 1.5 2.0 25 3.0

\

Figure 1. Posterior density of v for the first example

In Figure 2, our Bayesian wavelet smoother (G;) for the rain data is
plotted for b = 2.5,3,3.5,4 and ¢ = (b—1)/2. As suggested in Section 3, we
have chosen a = 8(b + 2)/(b — 2). Since only 22 observations are available
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J is 1. Figure 2 indicates that the choice of the particular value of the
hyperparameter b has very little influence on the predicted value of y;. In
fact, the maximum coefficient of variation is only 3.1%.

(o]
v
~—
--- b=25
b=3
b=3.5
b=4
o
- 4
o #
o Va
4
15 ° pa &
£ /3
g ) /
D o /r\ /o
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o \\.,‘o /
<
o \
o ) ,/
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o N
P \j ©
o o o
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0.2 0.4 0.6 0.8

time
Figure 2. Sensitivity analysis of the hyperparameter b

In Figure 3, our estimator (solid line) with b = 4 along with the error
bands (dashed lines) (£2,/v;) are plotted. It can be seen that most of the
observations fall inside the error bands. We have also shown (dotted line)
the standard wavelet estimator (Daubechies of order 2 with hard thresh-
olding) using the S library WaveThresh (¢f. Nason and Silverman, (1994)
or the web site: www.stats.bris.ac.uk/pub/reports/wavelets/wavelets.html).
Since the number of observations is not a power of 2, Wavethresh needs the
aid of the regressogram technique before computing the wavelet coefficients
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(¢f. Hardel et al., 1998, Section 10.8). It can be further noted that our
proposed methodology seems to lead to a smoother wavelet estimator than
the standard procedure.

15
|

—— Bayesian smoother
--- Errorbands
Standard estimator

10
|

Precipitation

0.2 0.4 0.6 0.8

time

Figure 3. Standard and Bayesian (b = 4) estimators

In Figure 4, alternative forms for the covariance matrix of the remainder
term are considered. Relevance of such extensions will be discussed in our
last section. The estimated values of y; obtained with the covariance matrix
discussed in Section 2 (our proposal) are shown by the curve with solid line.
The other covariance matrices considered are:

1. the covariance kernel given in AD with ¢ = 5, that is; Cov(n;,n;) =
exp{—cla; — z[}/2*7,
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2. a band matrix with diagonal entries equal to 2727/¢, the first lower and

upper diagonal entries equal to 2-2(7+D)s everywhere else;

2Js

3. a diagonal matrix with 272’9 as diagonal entries.

The estimates of y; obtained by these different covariance matrices are plot-
ted in Figure 4 and they correspond, respectively, to the dashed line, the
dotted line and the dot-dashed line. It is worth noting that, as with the
choice of the hyperparameter b, the different forms for the covariance struc-
ture do not lead to very different smoothers, once the optimal resolution
level is determined.

15
|

— Qn
--- AD
Band
Diag

Precipitation

time

Figure 4. Sensitivity to the remainder’s covariance matrix
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EXAMPLE 2. The second example is based on data provided by Prof.
Abraham Verghese of the Indian Institute of Horticultural Research, Banga-
lore, India (personal communication). The variable of interest y that we have
chosen from the data set is the weekly average humidity level. The observa-
tions were made from June 1, 1995 to December 13, 1998. (For some reason,
the observations were not recorded on the same day of the week everytime.)
We have chosen time (day of recording the observation) as the covariate x.
(Any other available covariate can be used also since wavelet based smooth-
ing with respect to any arbitrary covariate (measured in some general way)
can be handled with our methodology.) Since we have 185 observations here,
the maximum possible value for J is 6. Using Bayes factors, as described
in Section 3, we checked if the model corresponding to the choice J =5 is
more appropriate than that corresponding to J = 6. Doing so, the Bayes
factor in favor of J = 5 came out to be only 0.5257. Consequently, we chose
the model corresponding to J = 6. In Figure 5, we have plotted our wavelet
smoother (solid line) along with its (£2v;) error bands (dotted lines). The
hyperparameters were chosen to be b = 4, a = 8(b+ 2)/(b — 2) = 24 and
c=(b-1)/2=1/2.

Humidity level (in %)
80
I

40

T T T T T T T
200 400 600 800 1000 1200 1400

Days
Figure 5. Wavelet smoother and its error bands for the Humidity data

Even though this data set is is larger that the first one with n = 185
observations, the numerical computations required to obtain our results can
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still be performed on a regular desktop computer. This indicates that the
matrix structure of our model is such that the singular value decomposition
of the required n x n matrix does not seem to be an issue (at least for
moderate size data sets).

In Figure 6, a sensitivity analysis of the order of the Daubechies wavelets
isillustrated. The curves in this figure illustrate the effect of using Daubechies
wavelets of order 2 (solid line), 3 (dashed line), 4 (dotted line) and 5 (dot-
dashed line). Although the estimator of g;(z) becomes smoother as the
order increases, the different curves are similar in shape and present the
same basic features.

90
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Days
Figure 6. Sensitivity analysis with respect to the order
of the Daubechies’ wavelet

5.2. Simulation study. To investigate the strength of our methodology,
we conduct a simulation study here, and compare our results with those of
some competitors. In particular, we compare (i) the standard VisuShrink
approach (¢f. Donoho and Johnstone, 1994) which achieves a low variance at
the expense of bias, (ii) the SureShrink approach (¢f. Donoho and Johnstone,
1995) with soft-threshold function which minimizes an estimate of the ex-
pected mean squared error (MSE), (iii) the adaptive Bayesian wavelet shrink-
age approach (ABWS, ¢f. Chipman et al., 1997) which minimizes the MSE
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Table 1: Simulation results for the test-functions

Blocks Bumps
Method | Variance | bias? | IMSE | Variance | bias®> | IMSE
Visu 0.0719 | 0.6122 | 0.6840 | 0.1165 | 1.4543 | 1.5707
Sure 0.1369 | 0.0856 | 0.2225 | 0.2660 | 0.4167 | 0.6827
ABWS 0.0874 | 0.0121 | 0.0995 | 0.2228 | 0.1267 | 0.3495
BNPR 0.0716 | 0.2577 | 0.3293 | 0.0701 | 0.2584 | 0.3285
Doppler HeaviSine
Method | Variance | bias? | IMSE | Variance | bias®> | IMSE
Visu 0.0523 | 0.4327 | 0.4850 | 0.0339 | 0.0864 | 0.1204
Sure 0.0946 | 0.1340 | 0.2285 | 0.0416 | 0.0534 | 0.0949
ABWS 0.1006 | 0.0640 | 0.1646 | 0.0442 | 0.0433 | 0.0874
BNPR 0.0116 | 0.0315 | 0.0431 | 0.0341 | 0.0515 | 0.0856

using the posterior mean) and (iv) our proposed estimator (BNPR). The
standard test-functions of Donoho and Johnstone (1994), namely, ‘Bumps’,
‘Blocks’, ‘Doppler’ and ‘HeaviSine’ are used as the regression test-functions.

For this, n = 1024 points were selected from the regression function and
standard normal noise was added to the function values. A total of 1000
trials were conducted and, as in Chipman et al. (1997), the Haar wavelets
were used for ‘Blocks’, Daubechies wavelets of order 3 for ‘Bumps’, and
Daubechies wavelets of order 8 for Doppler and HeaviSine. (The results for
the first three estimators are taken from Chipman et al. (1997).)

Estimated Integrated Mean Squared Error (IMSE) of each of the estima-
tor f is used for comparisons as follows:

IMSE = /T B(F) — £(2))%]de
- / Var(f(x))de + / bias? (F(x))dz.
T T

Table 1 gives estimates of the IMSE for the different estimators of the
test-functions. It can be seen that the BNPR estimator performs excellently.
It generally has a smaller variance than the others, but a somewhat larger
bias than ABWS. However, except for ‘Blocks’, this translates into a smaller
IMSE than that of the other estimators. While ABWS seems to be the
choice for ‘Blocks’, it is BNPR which comes out on top for ‘Doppler’. In
these test cases, the other estimators don’t seem to compete well with these
two except in the case of ‘Blocks’.
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6. Discussion

We have developed a Bayesian wavelet smoother in this paper which
seems to be different from what is currently available. We have also pro-
vided error bands as an index of estimation error. The starting point of
the approach taken here is similar to that in AD but there are substan-
tial differences in the actual methodology. The foremost among them being
the treatment of the remainder R;. It was crucial in AD to estimate this
remainder since it decided whether the regression function should be a poly-
nomial or not. Here, however, the remainder is only needed to complete the
model since g; with a large enough resolution level J can approximate any
(reasonable) regression function satisfactorily. The other major difference,
of course, is the use of wavelets instead of any other set of basis functions to
represent a general regression function. As mentioned in the Introduction,
the strength of wavelet basis over others is that wavelets can identify local
features much more effectively and efficiently.

There are many differences between our proposed approach and the stan-
dard wavelet based procedures. The main difference is that the analysis
is based on the data domain rather than the wavelet domain, so that as-
sumptions which lead to easy application of the discrete wavelets transforms
(DWT) are not needed. Our methodology may be perceived to be compu-
tationally intensive, requiring the singular value decomposition (SVD) of an
n X n matrix. However, note that this computation is required only once
and further, the involved matrix has special structure rendering this com-
putation not very complex. An indication of this was seen in Example 2,
where the entire set of computations required to bring out the smoother
for a moderate sized data set could easily be done on a desktop computer.
One other major difference between our approach and many other wavelet
based approaches is that we do not need to impose additional thresholding
since it is incorporated into the model choice criterion discussed in Section
4. The reason for this, we feel, is that the a and § parameters that we end
up estimating finally are determined by a model selection rule such as Bayes
factor. Finally, based on a simulation study using standard test-functions,
our wavelet smoother seems to perform very well compared to the other
available wavelet based estimators.
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