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SUMMARY. In this paper we answer a question concerned with the estimation of 6;
when Y; ~% N(0;,07),i = 1,2, are observed and 6; < 6. In this case f2 contains infor-
mation about #; and we show how the relevance weights in the so-called weighted likelihood
might be selected so that Y> may be used together with Y1 for effective likelihood-based
inference about 6;. Our answer to this question uses the Akaike entropy maximization
criterion to find the weights empirically. Although the problem of estimating 6; under
these conditions has a long history, our estimator appears to be new. Unlike the MLE
it is continuously differentiable. Unlike the Pitman estimator for this problem, but like
the MLE, it has a simple form. The paper describes the derivation of our estimator,
presents some of its properties and compares it with some obvious competitors. One of
these competitors is the inadmissible maximum likelihood estimator for which we present
a dominator. Finally, a number of open problems are presented.

But, what is information? No other concept in statistics is more elusive in
its meaning and less amenable to a generally agreed definition.
— D. Basu (1975).

1. Introduction

Through this article, we pay tribute to the immensely important contri-
butions made by Professor D. Basu to the understanding of the foundations
of statistical inference. Referring in particular to his well-known founda-
tional paper on information and likelihood (Basu 1975), we show how the
likelihood can be extended to use “the whole of the relevant information
contained in the data”, a desideratum Basu attributes to Fisher. In par-
ticular, this paper shows how through that extension bias can be traded
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to gain extra information and a resulting increase in precision in statistical
estimation.

The problem arises when an investigator has data from a population
other than that of his or her inferential interest. Do these auxiliary data
contain information of value for estimating parameters in the population of
interest? If so, how can the bias in the auxiliary sample be traded off for
precision in the required parameter estimators.

The specific problem we consider is that of estimating the mean 6; of a
univariate normal population from which an observation y; has been drawn.
We suppose an independent observation yo has also been drawn from another
normal population with mean 6> when 6; < #>. Now the general questions
we ask above can be stated more specifically by asking how y, can be used
in conjunction with y; to create an estimator that improves on the estimator
y1 based only on data from the first population.

Heuristics suggest an affirmative answer. The event ys < y; combined
with the knowledge that 6; < 6, suggests 6; ~ 6». That suggests a better
estimator of #; would be obtained by taking the BLUE that would be used
if the population means were equal.

We describe a new method for operationalizing these heuristics in Sec-
tion 2. That method is an extension of the maximum likelihood method
and, like its predecessor, is a very generally applicable tool for the practi-
tioner’s toolbox. A primary purpose of this article is the comparison of the
estimator produced by this method against its purpose-built competitors
designed specifically for the problem considered in this paper. That in turn
will help to determine the degree of confidence we can place in this new tool
for general use.

A number of authors have found such competitors. They differ from the
one we obtain with our new method for exploiting - in the estimation of ;.
Unlike the classical unbiased MLE wviz y; (hereafter denoted by ULE), the
alternative estimators obtained by those authors are biased like ours. How-
ever, these estimators can have substantially smaller mean-squared-errors
(MSE’s) than their classical counterpart over portions of the parameter space
deemed to be of particular importance. At the same time, their MSE’s are
either smaller or not appreciably larger over the rest of the parameter space
than the MSE of the ULE. Thus an effective bias-variance trade-off is indeed
possible; information in the sample from the second population can help in
estimating the mean of the first.

These “old” estimators, described in Section 3 to make that trade-off,
depend very fundamentally on the assumption that #; < 6. However, in
practice > may well be slightly less than ;. These practical considerations
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point to the need for good performance in this circumstance. Therefore the
“robustness” of these old estimators is of concern and will be investigated.

At the same time we describe in Section 2 a new approach to estimation
that incorporates the assumption 1 < 05 at a “secondary” level of modelling.
Its robustness against violation of that assumption is therefore expected.

That new approach uses an extension of Fisher’s classical likelihood
that Hu (1994) introduces and calls the “Relevance Weighted Likelihood”
(REWL). It generalizes the local likelihood defined in the context of non-
parametric regression by Tibshirani and Hastie (1987) that was extended
as a local likelihood by Staniswalis (1989) and as a quasi-local-likelihood by
Fan et al. (1995).

In contrast to the local likelihood, the REWL and its extension, the
“weighted likelihood (WL)” described in Section 2, can be a global likelihood
and in one of the applications developed by Hu and Zidek (2002, hereafter
HZ), it is shown how the celebrated James-Stein estimator can be found as
a maximum (weighted) likelihood estimator when the weights are estimated
from the data.

The weights allow bias to be traded for precision in the likelihood setting,
as bias is traded for variance in the nonparametric regression setting. The
need for such a theory has become increasingly important as the scale of
modern experimental science has grown in its space-time scales thanks to
demand (eg. environmental science) combined with feasibility (eg. through
information technology). On these scales, the replicated experiment seems
completely unrealistic as an experimental paradigm, leading to the need for
a theory that embraces bias without sacrificing the goals of efficiency and
precision enshrined in Fisher’s foundational works.

The theory described in Section 2 enables the bias-precision trade-off
to be made without relying on the Bayesian approach (see Berger 1985).
The latter permits the bias-variance trade-off to be made in a conceptually
straightforward manner. Reliance on empirical Bayes methods softens the
demands for realistic prior modelling in complex problems. Efron (1996)
illustrates the empirical Bayes approach in such problems and uses the term
“relevance” in a manner similar to that of Hu (1994).

Our theory is proposed as a simpler alternative to the empirical Bayesian
approach for use in complex problems. [Fuller introductions are given by Hu
and Zidek (2001) and HZ.] However, the weighted likelihood and inferential
procedures deriving from it are not seen as competitors to Bayesian meth-
ods. Indeed, the latter would generally be seen as preferable when they
can be used. However, the weighted likelihood can be considered a practi-
cal alternative in situations when they cannot. In those situations, a large
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number of uncertain quantities may obtain and even non-Bayesian methods
like those obtained using an “empirical Bayesian” or “improper Bayesian”
approach may be difficult to use. In this article, we demonstrate that the
WL may offer a compromise that allows some prior knowledge to be used
in constructing the weights, while eliminating the need to attempt what
could be an unrealistic elicitation of prior knowledge about all of the model
parameters.

We thereby gain a theory that formally links a diverse collection of sta-
tistical domains such as weighted least squares, nonparametric regression,
meta-analysis and shrinkage estimation. Starting with the likelihood in these
domains yields new methods and suggests new problems as we will attempt
to show. At the same time, the WL comes with an (as yet incomplete) under-
lying general theory including extensions of Wald’s theory for the maximum
likelihood estimator (Hu 1997).

In Section 3 we study the bias-variance trade-off made by a number of
biased estimators proposed as solutions to the problem central to this paper.
Included is the estimator we propose in Section 2. Numerical assessments
of their properties point to a number of conjectures and questions in that
section and deeper analysis in Section 4.

In Section 4 we answer a number of questions raised in Section 3. A dom-
inator for the inadmissible maximum likelihood estimator is also presented
there. However, many of the conjectures remain unproven and questions
unanswered.

In the concluding Section 5 we summarize the results of our inquiry and
the possible value of the WLE-based methodology. In particular we look
at the robustness of the various estimators considered in this paper against
violations of the basic assumption that 6; < 5.

2.  Weighted Likelihood Estimation

In this section we describe for completeness the weighted likelihood (WL)
in the general case and then apply it to the specific problems of interest in
this paper. Assume {Y;} are independently distributed random variables or
vectors, each having an associated population distribution with probability
density and cumulative distribution (PDF and CDF, respectively) f; and Fj.
Let Y = (Y1,...,Y),) be the vector or matrix of these measurable attributes.

From each population ¢, n; > 0 items are randomly and independently
sampled, yielding Y; = (Yji1,...,Yin,;), Yij representing the Y; measured on
the j-th item sampled from the ¢-th population 7 =1,...,n;, 1 =1,...,n
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(the null vector when n; = 0). Assume the Y;;, j = 1,...,n; are indepen-
dent as well as identically distributed, each having its associated population
distribution. Denote the realization of Y; by y;, ¢ =1,...,n.

In this paper inferential interest concerns attributes of population 1.
However, in general Hu and Zidek (2001) and HZ consider other possibilities
such as simultaneous inference about parameters of all the populations.

Starting from the Akaike entropy maximization principle (1973, 1977,
1978, 1982, 1983, 1985), HZ derive the WL in the nonparametric and para-
metric cases. To be precise they suppose (when the Y are discrete) that a pre-
dictive distribution say g of Y7 must be chosen to maximize [ logg(y)dFi(y)
where F; denotes the true “conceptual” population distribution for the first
population. This maximization must be done subject to knowledge that F}
resembles each of the other Fj, j # 1, that is subject to [logg(y)dF;(y) >
¢j, j # 1 for specified {¢; j # 1}. A Lagrangian argument then implies
that g maximizes a linear combination of the [logg(y)dF;(y), j =1,...,n.
However, since the {F;} are unknown they are estimated by {F;}, their
empirical distribution functions. When only one observation y; is available
from population 7 = 1,...,n, the empirical distribution for that population
becomes a point mass at that observation.

In any event, with these heuristics the optimum g maximizes the non-
parametric relevance likelihood function that, viewed as a function of g, is

n nj

g— [LTL 9" (yn)- (2.1)

j=1ll=1

Similar heuristics apply to the case of interest in this paper, i.e. the
parametric case, where for the likelihood we have instead

n Ny

0 — TLTL £ (i | 6:) (2.2)

j=1i=1

where 6 = (61,...,0,). In both cases we take \;j/n; = 0 when n; = 0 for
all 7 and j.

In fact, the heuristic derivation gives A\;; > 0 as originally required in the
REWL (Hu 1994). However, we will drop the latter restriction and thereby
obtain the WL rather than REWL. This formalistic extension enables our
theory to embrace estimators seen below that were obtained previously by
other authors. Wang (2001) studies this extension and in particular shows
that it can also be obtained in a very general setting from the Akaike entropy
maximization criterion.
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The weights {);;} enable the investigator to trade off bias for precision in
estimating the likelihood for population 1 using the data from the remaining
populations. Ideally the choice of these weights (equivalently the specifica-
tion of the {c;} above) will be context dependent. However, HZ suggest a
general method for their selection based on a suggestion of Stigler (1990).
That method, again based on the use of the maximization of entropy ap-
proach with follow-up estimation, is the one used in this paper. Rather than
describe it in general we demonstrate it below in specific problems. Wang
(2001) gives an alternative approach to estimating the weights, his being
based on cross-validation.

The WLE for 6; is found by maximizing (2.2). Hu (1997) shows that
the theory of Wald for the classical MLE extends to the REWL under a
suitable adaptation of Wald’s assumptions. Wang et al. (to appear) extend
Wald’s theory in a somewhat different direction for the WL. In particular,
the weights are allowed to be data-dependent.

We apply the WL to the case of two normal populations Y; ~ N(6;,07)
for which the {0?} i = 1,2 are known. Now n; = ny = 1 for the two
populations involved and for simplicity we denote the weights by A\;; =
Ai, © = 1,2 for those populations. The WLE for ; or WLE for short is
easily shown to be

5WLE'(Y17 YQ) == Y1 + Wa

where W =Y, — Y] and a € [0, 1] obtains from the weights and needs to be
specified. The weight ratio defines a through
Ay 07«

N AT (23

The maximization of entropy criterion above may be applied to find the
weights. That criterion leads to the minimization of the MSE in this case of
normal population distributions. Hence the optimal choice of a if A = 05—6,
were known would be

2
g7

Qoptimal = .
P o? + 0% + A2

However, since A is unknown it must be estimated. The appropriate
estimator for the case considered in Section 3 where A > 0 would be

of

.
W)=t ewe

(2.4)

where W = max{0, W}.
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This approach yields a smooth estimator since « is “fitted” to the data
only after the MSE has been computed. In particular it is a differentiable
function of W in contrast to the truncated MLE of 61 which is not. Now the
performance of the proposed estimator needs to be explored and we do this
both theoretically and numerically in the next section.

However, HZ emphasize that the specification of the weights should best
be done in the context of the specific inferential context. This suggestion
may be followed in the restricted means problem above since a variety of
estimators that exploit Y5 in the estimation of 6; have already been proposed.
Moreover, each may be written in the form above for the WLE with an
estimated a. Thus each entails an implicit choice of the weight ratio that
can be exploited through the equation above relating that ratio to a. In
this paper we will explore these various choices and compare the associated
estimators in the next section.

Before leaving this section, we note that linear estimators like those above
arise quite generally in Bayesian settings. The empirical Bayesian will then
be faced with the problem of estimating the coefficients as we are. Presum-
ably, the estimation of those weights can sometimes be simplified by appeal
to the form of the prior and the estimation of its hyperparameters. At the
same time the need to limit the estimates to conform to the prior could
be unduly limiting. For example, in spatially mapping the incidence of a
disease, a problem Wang (2001) studies, the weights in the WL can be left
quite arbitrary. In contrast, specifying a prior in a hierarchical Bayesian
or empirical Bayesian analysis may force the adoption of a “convenience”
model such as a Markov random field, that may be quite inappropriate, in
view of the difficulty of specifying realistic neighbourhood structures with
non-homogeneous spatial media.

Of course, if the weights are chosen appropriately in the linear case de-
scribed in the previous paragraph, the WLE will agree with the empirical
Bayes estimate. HZ give an example of such a serendipitous outcome. There
the means of a collection of Poisson population of counts are simultaneously
estimated and the WL is employed, the weight being an estimated Akaike
optimum weight. The result turns out to be precisely the same estimator
as that given by Berger (1985, p. 297) and obtained by an empirical Bayes
argument.

Note that in some albeit artificial examples the WL is exactly a Bayesian
integrated likelihood so that the MLE could be a posterior modal estimate
when a uniform prior is selected. In one hypothetical example of a meta
analysis, Zidek et al. (1999) used a generalized weighted likelihood ratio test
to combine several normally and independently distributed test statistics to
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test the null hypothesis of no treatment effect. The p-value for this test
was substantially smaller than that for any one generalized likelihood ratio
test and was similar to a posterior probability of the null hypothesis for a
Gaussian/Gaussian normal/conjugate normal model. However, in general
the degree of agreement between the Bayes, empirical Bayes and weighted
likelihood approaches remains to be more fully explored.

3. The Bias-Variance Trade-off

The bias-variance trade-off goes back at least as far as Stein’s discovery
that it could be made in the simultaneous estimation of independent normal
population means. That celebrated discovery stimulated the study of biased
estimation. The feasibility of the trade-off was demonstrated in a wide va-
riety of contexts. One such context was that of the present paper wherein a
number of biased estimators of ordered normal means were proposed.

We now examine that trade-off and the way it has been made by those
estimators. Specifically we compare five estimators of §; based on (Y7,Y3).
They are: dwrr(Y1,Y2) the WLE as defined and discussed in Section 2;
dmre(Y1,Y2) the MLE, i.e. the first co-ordinate of the MLE for (6,605)
under the restriction 61 < 69; dyrp(Y1,Y2) = Y7 the unrestricted MLE of
01 based on Yi; dprrn (Y7, Y2) the minimum of Y7 and Ys; and 6p(Y7,Ys) the
so-called Pitman estimator, i.e. the first co-ordinate of the generalized Bayes
estimator of (0,65), that estimator being computed from the uniform prior
on {(61,62) | 61 < 02}. Apart from dypr(Y1,Y2) = Yp these estimators are
given explicitly below:

2
g
b Y1,Y2) =Y, + Wa(W here (W)= ———2——: (3.1
wie(Y1,Y2) =Y + W&(W)  where &(W) P4 (3.1)
4] (Y1,Y2) —minYM —Y—l-;W
MLE\L1y 12 - 1, O'%—i-o’% — I 1+7_ - (32)
with7 = o3/0f and W_ =min(0,W);
5M]N(Y1,Y2) = min(YI,Yg):YI—I—W_; (33)
¢( i
ol \o?+ 03
6p(Y1,Y2) = Yi— L : (3.4)

2 2
| ——
\Jo?+ 03
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Figure 1: Graphs of the mean squared errors: selected estimators.

The Pitman estimator was proposed and studied by Cohen and Sack-
rowitz (1970). Note, however, that our formula for dp(Y7,Y3) is not the
same as the one given by them. They claim, erroneously, that one can
suppose, without loss of generality, that one of the two variances equals 1,
making their formula valid for that special case only.

REMARK 3.1 Note the differences in the way the above estimators depend
on 0?2 and o3. The estimators Y, and min(Y1,Ys) are independent of these
variances, the weighted and the Pitman estimator depend on both of them,
while the MLE depends on o? and o2 only through their ratio.

We begin by examining in Figure 1 the MSE’s of the estimators plotted
as functions of A = 6y — 6.

We consider cases below where the population variances are unequal.
For that reason we will in general divide all the MSE’s by o2 to enable
us to compare MSE plots. Therefore in all such plots the one for ULE has
constant value 1 for all A whatever be o1. As the classical (uniform minimum
variance unbiased) estimator of 6y, the ULE provides a natural benchmark
for assessing the performance of the alternatives considered in this paper.
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Figure 2: Graphs of relevance weight ratios for population 2 versus 1 for
selected estimators.

The MSE of another classical estimator, the MLE also appears in Figure
1. Tt appears to be uniformly smaller than that of the ULE but the two
are in close agreement for large A. That agreement encourages optimism
about the quality of the ULE since generally the MLE performs well. In
fact, it would appear that ULE and MLE are minimax estimators. At the
same time the MLE appears to dominate the ULE suggesting that the ULE
is inadmissible and dominated by the MLE. In fact, we wonder if the MLE
is admissible, a point we return to in the sequel along with others suggested
by the figures.

Figure 1 shows the MSE for the WLE (as well as the MLE) to be much
smaller than that of the ULE for small A-values. Moreover its MSE resem-
bles the MLE’s for such values.

How do the MLE and the WLE achieve their seeming superiority over
the ULE? The immediate answer is that they exploit the information in Y5
and they do so in a similar way. Figure 2 confirms this. That figure depicts
for all estimators other than the MIN, the implied or explicit weight ratios
as functions of W = Y5 — Y]. The ratios for the MLE and WLE are broadly
similar. However, the WLE - ratio decreases to zero more slowly than that



598 CONSTANCE VAN EEDEN AND JAMES V ZIDEK

Figure 3: Graphs of bias functions for selected estimators

of the MLE. Thus it makes more liberal use of that information than does
MLE. (It does so at the cost of greater bias.)

To gain a better understanding of how that superior performance is
achieved by the WLE and the MLE relative to the other two estimators
we turn to Figure 3 and see the bias functions of the various estimators.
Note the comparatively small absolute biases for both estimators when A
is close to zero compared to those of PIT and MIN. So we see that both
WLE and MLE gain their superiority over ULE by aggressively exploiting
the relevant information in Y5 to reduce their variances while controlling
their biases for small A.

At the same time, Figure 1 shows that as A grows larger the MSE for the
WLE increases and eventually exceeds that of the ULE. This observation
coupled with our earlier conjectures suggests the WLE is not a minimax
estimator. We wonder if it is admissible.

Unlike the WLE, which is (twice) differentiable, the MLE is not differ-
entiable. The well-known necessary condition for admissibility (see Sacks
(1963)) that estimators must be regular functions of the data, therefore en-
courages the belief that the MLE is not admissible. The remaining two
estimators under consideration in this paper, PIT and MIN, also seem to
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successfully trade bias for variance. In fact Figure 1 suggests PIT and MIN
dominate ULE. Moreover, this analysis suggests that both PIT and MIN
are minimax when the population variances are identical. That figure also
shows that neither estimator performs especially well when A is close to
zero. (They effect the bias-variance trade-off in rather subtle ways.) We are
led to wonder if MIN and PIT are admissible when the population variances
are equal. Observe in Figure 1 that the ULE-MSE uniformly exceeds that of
the Pitman estimator. Moreover the comparative advantage of the Pitman
estimator obtains not at A = 0 but rather for A around 2. To interpret this
observation note that the Pitman prior does not put high weight on 6; = 6,.
In fact its uniform prior on the range of (0y,602) forces PIT to optimize by
requiring a negative weight ratio (see Figure 2). It “pushes away” the infor-
mation in Y5 when the WLE and MLE embrace it (when A = 0) since under
the prior this possibility would be remote. Instead PIT saves the trade-off
for values of more realistic A’s under the assumed prior. Nevertheless, like
the other alternatives to the ULE considered here other than the WLE, PIT
proves to be negatively biased; it tends to underestimate 6; (see Figure 3).

MIN succeeds in making the bias-variance tradeoff (see Figure 1) but the
mechanism by which it does this proves elusive. The weight ratio for the
MIN cannot even be plotted in Figure 2, being infinite when W < 0 since
in that case the estimator puts all the weight on Y5 and none on Y;. On
the other hand, when W > 0 that ratio becomes zero. How does MIN so
successfully exploit Y27 The answer seems to be that since A >0, Y5 < Y;
suggests Y] is an overestimate of ;. We can then profitably shrink it down
to Y. To test this explanation we consider its implication when oy < o7,
i.e. when Y5 is a measurement of higher quality than Y; (even if biased as
an estimator of 61). In this case Y2 would indicate quite reliably when Y}
overestimates 6.

Figure 4 validates this heuristic reasoning. The relative gain in MIN’s
performance over that of ULE exceeds its gain when the population variances
are unequal.

On the other hand the explanation also suggests that when Y5 is of low
quality it will not help much to show when Y; overestimates ;. Again the
implication is validated, this time by Figure 5. MIN now performs poorly
against the other estimators as measured by its MSE.

These numerical assessments thus tend to support our explanation of how
MIN works and when it would perform well. It also points to the desirability
of making MIN depend on the population variances. This leads us to wonder
if a minimax estimator resembling MIN can be found for estimating 6; when
o9 > 01.
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Figure 4: Graphs of mean squared error functions for selected estimators
when population 1 (variance = 3) is overdispersed relative to 2 (variance =
1).

4. Performance of the estimators

In this section we answer some of the questions raised by the analysis
of the previous section. Those answers are stated as theorems whose proofs
can be found in the Appendix. We begin by stating in the next theorem
the mean-squared-errors of the estimators considered in Section 3. There
A=0y—01,0% =0} +03 0= (0,05) and T = 03 /0?.

THEOREM 4.1 For the MSEs we have :
(a) The MSE of Swirg is given by
Eo (Gwrp(Y1,Ys) —01)° =

o2 + 2
i+ r

EWa(W)(A =W) + EF(W)W?2 = (4.1)

W2 (@2I(W >0)+1) —2(of +03)
(02 + 02 + W?2)? ’

0%4-0'11 Ep
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Figure 5: Graphs of mean squared error functions for selected estimators
when population 2 (variance = 3) is overdispersed relative to 1 (variance =

1).
(b) The MSE of onrpE is given by
Eo(OrrLr(Y1,Y2) — 01)° =

ol + ﬁ (2A59WI(W <0) — EW2(W < 0)) = (4.2)

tetple - (o(2) - (2))

(¢) The MSE of oprrn is given by

Eo(arin(Y1,Y2) — 01) =

2, !
g
Y4

b (-t (-0 (2) -2 ()

EWI(W < 0)(2A —W(1 — 1)) = (4.3)
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(d) The MSE of the Pitman estimator is given by

i o)
Ep(0p(Y1,Y2) — 01)* =01 — L A 5975/ :
o
*(7)
o
In the next theorem some of the MSEs are compared. Like all compar-
isons between MSEs in this paper, they are made on the restricted parameter
space © = {0 | 61 < 02}. Thus, an estimator 0 is inadmissible for estimating
0; if there exists an estimator ¢* dominating it on © and ¢§ is minimax if it
minimizes, among estimators §*, supycq R(0*,0), where R(5*,0) is the MSE
of * at the parameter point 6.
We note here that the first result stated in Theorem 4.2 below can
be obtained from Kubokawa’s (1994) integral-expression-of-risk-difference
method. This method provides sufficient conditions for Y7 + (W) to dom-

inate Yj. For our case of two ordered normal means, Kubokawa and Saleh
(1994) use Kubokawa’s method to show that dp and dp/r dominate dyrp.

(4.4)

THEOREM 4.2 Fach of the estimators dppp and ép dominates dyrg. The
estimator dprry dominates dyrp when T < 1. The MSE’s of dpin (for
T < 1) and Sprpp are strictly smaller than O'% for all A > 0 with their limits,
as A — 00, equal to o3. For dprn with 7 = 1, the MSE equals 0% for A = 0.
For dp equality holds for A =0 as well as for A — oo.

The previous theorem proves the conjectures made earlier (for MIN only
when 7 < 1). The next theorem shows that the WLE, the MLE as well as
MIN are inadmissible and a class of dominators of the MLE is given. (Such
dominators can be found in Shao and Strawderman (1996)). Thus the next
result answers questions we raised in the previous section, the latter for MIN.

THEOREM 4.3 The estimators dwire, e ond dprn are inadmissible.
Further, dprpE is dominated by

TY1+Y2 _5* (YQ—Y1>
147 AN
where 05 is a dominator of the mazimum likelihood estimator of a non-
negative normal mean based on a single observation with unit variance.

In the following theorem we state a result of Cohen and Sackrowitz (1970)
concerning the admissibility and minimaxity of PIT. In the Appendix we give
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a simpler proof of the admissibility. A simpler proof of the minimaxity of PIT
can be found in Kumar and Sharma (1988, Theorem 2.3). That theorem thus
proves our earlier conjecture for PIT and it answers affirmatively a question
we raised in Section 3 concerning that estimator.

THEOREM 4.4 The Pitman estimator is admissible and minimaz. The min-
imaz value for our problem equals 2.

The following theorem contains more minimaxity results and proves the
first conjecture for the MLE made in Section 3 about it, as well as the
conjecture there for the MIN when 7 < 1.

THEOREM 4.5 The estimators Sy and dyg are minimaz and 50 48 Oprr N
when T < 1. Further, dprrn 18 not minimax when 7 > 1.

5. Discussion

In this article we have tried to show how the intuitively natural idea of
the weighted likelihood can be used in parametric estimation to trade bias
for precision and thereby reduce the MSE in fortuitous circumstances. The
resulting estimators use all the relevant information and not just the direct
sample information from the population of interest. By comparing those
estimators with others that were obtained earlier for the same purpose we
find the weighted likelihood to be promising.

Although we demonstrate the value of our method in a specific normal
means estimation context the method itself has wide applicability. Methods
of the type described here seem likely to assume increasingly greater impor-
tance as the space-time scales of modern experiments continue to expand
thanks to need and technological feasibility. Indeed the classical repeated
sampling paradigm on which Fisher bases his theory of the MLE will become
increasingly untenable as that scale grows. Reliance on biased but relevant
sample data will become increasingly imperative.

Brewster and Zidek (1974) show that both the MLE and PIT can be
obtained by the method presented in their paper. In fact they consider the
case of p > 2 populations and show how relevant information in samples
from populations 2,...,p may be used in estimating 6, the mean of the first
population when 0; < 0;, i = 2,...,p. Kubokawa and Saleh (1994) consider
this same problem for distributions with monotone likelihood ratio. Further
consideration of the extension of our results to more than two means will be
left for future work.
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We assessed numerically the performance of the various estimators of
this paper when —2 < 0y — 07 < 0. We found that the risk functions of MLE
and WLE are similar to the left of A = 0. Both appear to dominate ULE at
least in the range —1 < A < 0, although that of the WLE seems uniformly
lower than that of the MLE.

In contrast, both MIN and PIT do worse than ULE when A < 0. In
fact the risk of MIN is a rapidly decreasing function in that range so that
at A = —1 for example the risk of MIN is about 2.25 while that of PIT,
ULE, MLE and WLE is respectively about 0.5, 1.0, 0.8, 0.7. This provides
evidence of the anticipated robustness of the WLE under departures from
the parameter restrictions while at the same time offering some support in
favour of the MLE in these circumstances.

To conclude we summarize the results of our investigation in Section 4
of the conjectures and questions suggested by the numerical work in Section
3. We have answered negatively these questions on the admissibility of the
MLE and WLE respectively (in Theorem 4.3). Theorem 4.3 gives a negative
answer on the admissibility of MIN when o; = 09. However, Theorem 4.4
answers positively the same question for PIT.

The question on the form of the MIN when the population variances are
unequal remains open.

Theorem 4.5 proves the earlier claim that the ULE and MLE are mini-
max. Theorem 4.2 proves the claim here that the ULE is inadmissible and
dominated by the MLE. We have been unable to prove or disprove the claim
that the WLE is minimax in spite of the very strong numerical evidence
against it.

Theorem 4.2 proves the MIN dominates the ULE when 7 < 1 and the
PIT in any case. Theorem 4.5 proves an earlier conjecture that the MIN is
minimax when o9 < o1. At the same time, Theorem 4.4 shows that PIT is
minimax whatever be the o’s.

Appendix

This Appendix contains the proofs of the results presented in Section 4.
In these proofs the following four results (stated in the form of lemmas and
a corollary) are used.

The first lemma contains the well-known Stein identity.

LEMMA A.1 For a N (v,~?) random variable Z and a function g which is
almost everywhere (with respect to Lebesque measure) differentiable, £(Z —

V)g(Z) =v*E9'(Z).
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The following corollary gives expressions for the mean-squared-error of
the estimator Y7 + (W) of ;. These expressions follow immediately from
Lemma A.1 and the fact that the distribution of Y7, conditional on W, is

N(91+A_W o3 >:N<U%01+O'%(92—W)’O'%U%>. (A1)

1+7 71471 02 o2

COROLLARY A.1 The mean-squared-error of the estimator Y1 + o(W) of 64
s given by

Eo(Y1 — 01 + p(W))? = 07 + 28)(Y1 — 01)p(W) + Epp* (W),

where )
Ep(Y1 — b1)p(W) = 147 Eg(A = W)p(W). (A.2)
Further, if (W) is differentiable almost everywhere,
Eg(A = W)p(W) = —o° Egg (W), (A.3)

In our next lemma, a rotation technique used by Blumenthal and Cohen
(1968a) (see also Cohen and Sackrowitz (1970)) is applied.

LEMMA A.2 Let

Y1 + Y5 Y1 +Y,
TR oy, 1T

1+7 14+7

and let, for i = 1,2, pu; = EX;. Then Y1 + (W) is inadmissible for
estimating 01 based on (Y1,Y2) under the condition 61 < 0y if 62(Xs) =
Xo — (1 + 7)X2) is inadmissible for estimating o based on Xo under the
condition po > 0. Further, if 65(X2) dominates d2(X2) for estimating o un-
der the condition o > 0 based on Xo, then X1 —05(X2) dominates Y1+p(W)
for estimating 01 under the condition 61 < 6 based on (Y1,Y3).

= (A.4)

PROOF. Note that, under 6; < 6, p; is unrestricted while po > 0.
Further Y7 + (W) = X; — §3(X2). The result then follows from the fact
that X is unbiased and that X; and X5 are independent. O

The following result is used several times in our proofs. Its proof is

straightforward.
g ag

EgWAI(W <0) = (A?2+0?) (1 - ® (é» — Aog <—é> :

LEMMA A.3

EgWI(W < 0)
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We are now ready to give the proofs of the results in Section 4.

PROOF OF THE FORMULA FOR THE PITMAN ESTIMATOR dp (see (3.4)).
The proof of this formula is similar to the one given by van Eeden and Zidek
(2001) for the Pitman estimator when the difference between the normal
means is bounded. O

PROOF OF THEOREM 4.1. The results (4.1),(4.2) and (4.3) follow from
Corollary A.1 and Lemma A.3. The expression (4.4) for the MSE of §p can
be obtained by generalizing a proof of Al-Saleh (1997) and by one given by
Kumar and Sharma (1993). These authors assume o1 = o5. O

PROOF OF THEOREM 4.2. That §y/,r dominates dyrr follows from a
result of Lee (1981). He shows that for independent Y; ~ N (6;,1), i =
1,...,k, with 8; < ... <60, the i-th component of the order-restricted MLE
dominates Y;, 2 = 1,..., k. For our particular case, where k = 2, the result
can more easily be proved by using the second line of (4.2) and the following
inequalities

AEWI(W <0) <OforallA>0 (A.5)
EgW2I(W < 0) > 0 for all A > 0. (A.6)
From (4.4) it is immediately clear that dp dominates drpp.

To see that dy77n dominates oy p when 7 < 1, note that (see the second
line of (4.3))

AEWI(W <0) < Oforall A>0 (A.7)
(1 —7) EW2I(W < 0) 0 for all A >0 when 7 = 1 (A.8)
(1—7) EW?AI(W <0) > Oforall A>0whent <1.  (A.9)

From the second line of (4.3) and the inequalities (A.7) and (A.9) it follows
that the MSE of dp/rn with 7 < 1 is strictly smaller than a% for all A > 0.
For é)/1., the second line of (4.2) and the inequalities (A.5) and (A.6) imply
that its MSE is strictly smaller than o2 for all A > 0. As for the limits, as
A — 00, of the MSEs of dp/7n and dp/1, 5, use the last line of (4.3) and of (4.2)
and note that lima oo A? (1 —® (A/0)) = 0 and ima s A¢p(A/o) = 0.
That, for 7 = 1, the MSE of dy/7n equals o2 for A = 0 follows immediately
from the last line of (4.3).

Finally (using (4.4)), the MSE of 6p clearly equals 02 when A = 0. That

its MSE converges to o7 when A — oo can be seen from (4.4) by noting
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that AEh(W') = AEW(Z + A/o), where Z ~ N(0,1), W' = W/o and
h(z) = ¢(2)/®(z). The result then follows from the fact that, for each fixed
z, Ah(z+A /o) is bounded in z for A > 0 and converges to zero as A — oo. O

PROOF OF THEOREM 4.3. The inadmissibilities follow from Lemma A.2
as follows. For dyy 1 use the fact that d2(X2) does not satisfy Sack’s (1963)
necessary condition for admissibility for estimating puo > 0 based on Xs. For
dnvLE, 02(X2) is the MLE of ps > 0 based on Xy which is well-known to be
inadmissible. The dominator follows from Lemma A.2. Finally, for dyrn
the estimator do is inadmissible because it is not monotone. O

PROOF OF THEOREM 4.4. As already noted above, Kumar and Sharma
(1988, Theorem 2.3) give a proof of the minimaxity of §p. Their proof is
very much simpler than the one given by Cohen and Sackrowitz (1970). The
Kumar-Sharma proof is based on an extension of a result of Blumenthal and
Cohen (1968b, Theorem 3.0).

For an alternate and simpler proof of the admissibility of dp, use the
transformation (A.4). Then (see the proof of Lemma A.2) 6p(Y7,Y2) =
X1 — 62(X3), where §3(X3) can be written in the form

(52(X2) = X2 + O'(XQ)h (Ui?g))

with 0?(X3) the variance of X. Further, §; = p; — o and 6; < 6y <
p1 € (—o00,00), g > 0.

So, it is now sufficient to show that §(X) = X; — d2(X>) is admissible
for estimating 1 — o based on X = (X7, X3) when o > 0. We will show
this by using Blyth’s (1951) method.

Suppose that there exists an estimator ¢'(X) which dominates 6(X) on
Q={p| p € (—o00,00),u2 > 0}. Then, because the risk function R(d,, i)
of every estimator d,(X) is continuous in p for p € €, there exists an ¢ > 0
and a rectangle S = (uy.1, p1,2) X (12,1, p2,2) C 2 such that

R(0,u) — R(8',pu) >¢ onS. (A.10)

Now take a sequence of priors \,,n = 1,2,... for u € Q where, for each n,
p1 and po are independent, pq with the improper uniform prior on (—oo, c0)
and py with density e=#2/™ /n on py > 0. Then (A.10) implies that

12,1 12,2 1
n(®) = () > eurp = pg) (¢ —e )
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where the r,’s are Bayes risks with respect to A,,.

Now let, for ¢ = 1,2, §,;(X;) be the Bayes estimator of ;; based on X;
with respect to the (marginal) prior of u;. Then, by the prior independence
of u1 and po and the conditional independence of X; and X5 given p; and
19, the Bayes estimator of p1 — uo for the prior A\, based on X, is given by
0n(X) = 0p1(X1) — 0n2(X2), where (see Katz (1961))

o?(X3)
X, —
(5n72(X2) =Xy — U2(X2) + U(Xg)h 20-(T2)
Further (see Katz, (1961))
rn(8) = Fn(0n) = o (52) — T2 (Gn2) = 0(%), (A.12)

where r, o is the Bayes risk of an estimator based on Xy with respect to the
(marginal) prior of us.
But (A.11) and (A.12) imply that, for sufficiently large n,

n(0) = rn(9')
rn(0) — rn(dn)

which contradicts the fact that, for each n, §,(X) is the Bayes estimator of
1 — po with respect to A, based on X. O

>1

REMARK A.1 Katz’s minimazity and admissibility proofs are incorrect
for the general case of the exponential family he considers (see van Eeden
(1995)), but the above quoted results of his for the normal mean are correct.

PROOF OF THEOREM 4.5. The minimaxity results follow immediately
from Theorem 4.2 and the fact that, by Theorem 4.4, the minimax value
for our problem is equal to the mean square error O'% of dyr,g = Yi. That
dp1N is not minimax when 7 > 1 can be seen from the second line of (4.3)
by noting that the MSE of 07y is larger than 02 when A = 0. O
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