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Abstract

In Kozek (2003) it has been shown that proper linear combinations of some
M-estimators provide efficient and robust estimators of quantiles of near
normal probability distributions. In the present paper we show that this ap-
proach can be extended in a natural way to a general case, not restricted to a
vicinity of a specified probability distribution. The new class of nonparamet-
ric quantile estimators obtained this way can also be viewed as a special class
of linear combinations of kernel-smoothed quantile estimators with a varying
window width. The new estimators are consistent and can be made more ef-
ficient than the popular quantile estimators based on kernel smoothing with
a single bandwidth choice, like those considered in Nadaraya (1964), Azzalini
(1981), Falk (1984) and Falk (1985). The present approach also yields simple

and efficient nonparametric estimators of a score function J(p) = − f ′(Q(p))
f(Q(p))

,

where f = F ′ and Q(p) is the quantile function, Q(p) = F−1(p).

AMS (2000) subject classification. Primary 62G99; secondary 62G35, 62G30.
Keywords and phrases. Asymptotic properties, kernel estimators, M-esti-
mators, quantiles, score function, smoothing.

1 Introduction

Let Y be a random variable with a cumulative distribution function (cdf)
F defined on the real line. Quantile function

Q(p) = F−1(p) = inf{y : F (y) ≥ p, p ∈ (0, 1)}
is frequently used in many areas ranging from statistical data analysis to
risk measurement in Econometrics, cf. Parzen (1979), Engle and Manganelli
(2000) and Koenker and Xiao (2004). If Y1, Y2, . . . , Yn is a sample from F
and F̂n is the corresponding empirical distribution function then the sample
quantile function

q̂n(p) = F̂−1
n (p) (1)
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is used frequently as an estimator of the population quantiles.

Empirical quantiles are known to be deficient (Falk (1984)) with respect
to some nonparametric, smoothed quantile estimators. It is also known, even
in a more general context, that for small sample sizes smoothing reduces the
variance of the sample functionals, cf. Fernholz (1993) and Fernholz (1997).
However, since the window width converges to zero the asymptotic variance
of the smoothed estimator is identical with that of the non-smoothed sample
functionals.

Falk (1984), Kaigh and Sorto (1993) and Cheng and Parzen (1997) report
in detail about classes of distribution functions where the empirical quantiles
are superseded in finite samples by some of their nonparametric competitors.
The class of kernel smoothed empirical quantiles has been the most exten-
sively studied in the literature, cf. Parzen (1979), Falk (1984), Falk (1985),
Cheng and Parzen (1997), Falk (1985) and Falk and Reiss (1989). Other
classes include Bernstein polynomial type estimators studied in Muñoz Pérez
and Fernández Palaćın (1987), Kaigh and Sorto (1993) and Cheng (1995)
and the perturbed sample quantile estimators, coinciding with the quan-
tile of a kernel estimator of the cumulative distribution function studied in
Nadaraya (1964), Azzalini (1981), Yamato (1972/73), Mack (1987), Ralescu
(1992), Ralescu and Sun (1993) and Ralescu (1996).

In the present paper we introduce and explore properties of a new class
of approximations to quantiles based on M-functionals and derive asymp-
totic properties of the corresponding sample estimators. Our approach is
similar to the method of perturbed sample quantile estimators introduced in
Nadaraya (1964), however, by contrast with the traditional smoothing tech-
niques, we consider here the effects of using a constant window width. We
show that in this way one can get excellent approximations to quantile func-
tionals based on M-estimators. Our estimator Q̂n(p) equals the intercept
of a particular polynomial regression of degree 3, fitted to values of several
perturbed sample quantile estimators, each with a different window width
hi, i = 1, 2, . . . ,m. The regression polynomial of variable h is particular be-
cause it’s linear term is not present. Moreover, we show that the regression
coefficient at h2 can be used to estimate the score function J(p) = − f ′(Q(p))

f(Q(p)) .

Our estimators are asymptotically unbiased and, for a broad class of
cumulative probability distribution functions, they have asymptotic variance
lower than the variance of the corresponding empirical quantiles. Hence they
can easily compete with empirical quantiles in applications to regression
quantiles introduced in Bassett and Koenker (1978). We refer to Green and
Kozek (2003) for some applications of M-regression quantiles to weather
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modelling.
The paper is organized as follows. In Section 2 we present links between

M-estimation, kernel estimation and perturbed quantiles. In Section 3 we
derive properties of M-functionals corresponding to the perturbed quantiles.
In Section 4 we show that the asymptotic variance of the empirical perturbed
quantiles is decreasing for h in a vicinity of zero. In Section 5 we present
our combined estimators of quantiles and score function and report some
simulations providing further insight into their asymptotic properties. In
Section 6 we present the asymptotic theory of our estimators.

2 M-Estimators, Kernel Estimators and Perturbed Quantiles

Let Y be a random variable with a cdf F and let K be another cdf, which
can be chosen by an analyst. Let Z be a random variable independent of X
with a cdf K. Let h > 0 and X = Y − hZ. Then

Hh (x) = P (X ≤ x) =
∫ ∞

−∞

[
1 −K

(
y − x

h

)]
F (dy) = 1−EFK

(
Y − x

h

)
.

(2)
If Hh is continuous and increasing then for every p ∈ (0, 1) equation

Hh (x) − p = 1 − EFK

(
Y − x

h

)
− p = 0 (3)

has a unique solution, say Qp,h (F ), a p-quantile of Hh. Equation (3) may be
considered as an estimating equation of the p-quantile of Hh. The resulting
estimator q̃p(h) = Qp,h

(
F̂n

)
solving equation

1 − 1
n

n∑
i=1

K

(
Yi − x

h

)
− p = 0 (4)

is identical, in the case of K1 (z) = 1 − K (−z), with the kernel quantile
estimator introduced in Nadaraya (1964), except that we are not changing
h with the sample size n.

The cdf Hh given by (2) can be considered as a cdf of a perturbed proba-
bility distribution corresponding to F . Consequently, the functional Qp,h (F )
is referred to as a perturbed p-quantile of F , cf. Ralescu (1992) and Ralescu
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and Sun (1993). Let us note that

γ (θ) = 2
∫ θ

0
(Hh (x) − p) dx

= 2EF
∫ θ

0

(
1 −K

(
Y − x

h

)
− p

)
dx

= −EF
∫ θ

0
M ′
p

(
Y − x

h

)
dx

= EF

[
Mp

(
Y − θ

h

)
−Mp

(
Y

h

)]
, (5)

where

Mp (y) =
∫ y

0
(2K (u) − 1) du+ (2p − 1) y. (6)

Since Hh is non-decreasing the functions γ (θ) and Mp(y) are convex. If
Hh is strictly increasing on its support interval then γ (θ) is strictly convex,
Qp,h (F ) is the unique minimizer of γ (θ) and hence it can be consistently

estimated by an M-estimator Qp,h
(
F̂n

)
, where F̂n is an empirical cdf based

on a sample from F . If K is also continuous and increasing on its support
interval, then Qp,h

(
F̂n

)
solves as well equation (4).

Let us note that by kernel smoothing interpretation of the estimating
equation (4) the parameter h can be called a window width or a smoothing
parameter. If, however, equation (4) is considered as defining an M-estimator
(or Z-estimator, cf, van der Vaart and Wellner, 1996), then h can be referred
to as a scale parameter.

The link of the estimating equation (2) with the M-functional (5) plays
an important role in the present paper. By keeping h fixed we can readily use
the asymptotic theory of M-estimators to explore properties of both quantile
functional Qp,h (F ) and of its sample estimator Qp,h

(
F̂n

)
.

3 Perturbed Quantile Functionals for Small h

We shall assume that Z has a cdf K with a compact support and two
moments κk, k = 1, 2 such that κ1 = 0 and κ2 > 0. By (5), the functional
Qp,h (F ), called a perturbed p-quantile of F , coincides with a p -quantile of
X = Y − hZ. Qp,h (F ) also minimizes

Mp,h (θ) = EFMp

(
Y − θ

h

)
, (7)



M-estimators of quantiles 281

where Mp (y) is given by (6). Assuming that Y and Z have probability den-
sity functions f (y) and k (z) , respectively, the probability density function
of X is given by

gh (x) =
∫ ∞

−∞

1
h
f(x+ z)k

( z
h

)
dz.

The following lemma provides further justification of the name perturbed
p-quantile of F for Qp,h (F ). It shows that Qp,h (F ) differs from Q(p), the
quantile of F , by at most by a term of order h.

Lemma 3.1 If Z has a compact support with a density function positive
in a neighbourhood of zero and the density function f (y) is positive in a
neighbourhood of Q(p) then, for small h, we have

|Qp,h (F ) −Q(p)| ≤ cKh,

where the constant cK depends on the compact support of K.

Proof of Lemma 3.1. Let cK be such that |Z| ≤ cK with probability 1.
Then, with probability 1 we have

{Y − hZ ≤ Q(p) − hcK} = {Y ≤ Q(p) + h (−cK + Z)} ⊂ {Y ≤ Q(p)}
⊂ {Y ≤ Q(p) + h (cK + Z)} = {Y − hZ ≤ Q(p) + hcK} .

Since P (Y ≤ Q(p)) = p and our assumptions guarantee the uniqueness of
quantiles Q(p) and Qp,h (F ) we conclude that

Q(p) − hcK ≤ Qp,h (F ) ≤ Q(p) + hcK .

�
We need Lemma 3.1 to prove Theorem 3.1 below. Theorem 3.1 shows that,
under some additional week assumptions on F and K, Qp,h (F ) differs from
Q(p) by a term κ2

2 J(p)h2 + o(h2) where J(p) is a score function

J(p) = −f
′ (Q(p))
f (Q(p))

, (8)

and where f = F ′. The score function J(p) plays an important role in non-
parametric statistics, cf. Hájek and Šidák (1967), Parzen (1979) and Behnen
and Neuhaus (1989). In Section 5, apart from new estimators of quantiles,
we also will discuss new estimators of J(p) suggested by Theorem 3.1.
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Theorem 3.1 Assume that F has three continuous derivatives vanishing
at −∞ and the M-function is given by (6), where K is a cdf with a compact
support, the first moment κ1 = 0 and the second moment κ2 > 0. If f is
positive at Q(p) then the perturbed quantile Qp,h (F ) has the following Taylor
expansion

Qp,h (F ) = Q(p) +
κ2

2
J(p)h2 + o

(
h2

)
, (9)

where Q(p) is the p-quantile of F .

Proof of Theorem 3.1. Let q be a p-quantile of U , qo a p-quantile of Y
and let c = q − qo. By the definition of quantile, Lemma 3.1 and by Taylor
expansion we have the following.

p =
∫ q

−∞
gh (u) du =

∫ q

−∞

∫ ∞

−∞

1
h
f(u+ z)k

( z
h

)
dzdu

=
∫ q

−∞

(
f (u) +

κ2

2
f ′′ (u)h2

)
du+ o

(
h2

)
= F (q0 + c) +

κ2

2
f ′ (q)h2 + o

(
h2

)
= p+ f (q0) c+

1
2
f ′ (q0) c2 +

κ2

2
f ′ (q)h2 + o

(
h2

)
= p+ f (q0) c+

1
2
f ′ (q0) c2

+
κ2

2
(
f ′ (q0) + cf ′′(q0)

)
h2 + o

(
h2

)
.

Hence, we get(κ2

2
f ′ (q0)h2 + o

(
h2

))
+

(
f (q0) +

κ2

2
f ′′(q0)h2

)
c+

1
2
f ′ (q0) c2 = 0. (10)

Now, applying Lemma 3.1 we choose the proper root c(h) of (10) and with
some algebra we get

c(h) =
1

2f ′ (q0)

(
−κ2f

′′(q0)h2 − 2f (q0)+√
4f (q0)

2 + κ2
2f

′′(q0)2h4 + 4κ2f ′′(q0)h2f (q0) − 4κ2f ′ (q0)2 h2 + o (h2)
)
.

(11)

Next, by Taylor expansion√
1 + x2 = 1 +

1
2
x+ o(x)
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applied to the square root at (11) we get, again with some algebra,

c(h) = −κ2

2
f ′ (q0)
f (q0)

h2 + o
(
h2

)
.

Consequently, we obtain expansion (9)

q = qo + c = qo − κ2

2
f ′ (q0)
f (q0)

h2 + o
(
h2

)
. (12)

�

4 Variances of Perturbed Sample Quantiles for Small h.

To estimate the perturbed quantiles Qp,h (F ) one can use either a solution
of the sample version (4) of estimating equations (3) or, equivalently, by
minimizing a sample version

M̂p,h (θ) =
1
n

n∑
i=1

Mp

(
Yi − θ

h

)
(13)

of the convex functional Mp,h given by (7). The estimator, to be denoted

by Q̂p,h = Qp,h

(
F̂n

)
, is asymptotically normal AN

(
Qp,h (F ) , σ

2(h)
n

)
(cf.

Huber, 1981, p.50, Corollary 2.5) with the asymptotic variance σ2(h) given
by

σ2(h) = AV ar
(
Q̂p,h

)
=

∫
ψ2(y,Qp,h (F ))dF (y)(∫
ψt(y,Qp,h (F ))dF (y)

)2 , (14)

where

ψ(y, t) = 2K
(
y − t

h

)
− 2(1 − p)

and

ψt(y, t) =
∂

∂t
ψ(y, t) = −2

h
k

(
y − t

h

)
.

Let f = F ′. Notice that for q = Qp,h (F ) and q0 = Q(p) we have by Theorem
3.1 that q − q0 = κ2

2 J(p)h2 + o(h2). With this notation, (14) can be written
as follows

σ2(h) =

∫ [
2K

(y−q
h

) − 2(1 − p)
]2
dF (y)(

2
h

∫
k

(y−q
h

)
F (dy)

)2 =
J1(h)

(J2(h))2
. (15)
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To find the behaviour of the asymptotic variance σ2(h) for small h we need
to find Taylor expansion in h for both J1(h) and J2(h). We assume here
that the probability distribution corresponding to the cdf K is symmetric,
non-degenerate and concentrated on interval (−1, 1). We have

J1(h) =
∫ ∞

−∞

[
2K

(
y − q

h

)
− 2(1 − p)

]2

dF (y)

= 4(1−p)2F (q − h)+4p2 (1−F (q+h))

+4
∫ q+h

q−h

[
K

(
y−q
h

)
−(1−p)

]2

dF (y)

= 4p (1 − p) + 4p2 (F (q0) − F (q + h)) + 4(1 − p)2
(
F (q − h)

− F (q0)
)

+ 4
∫ q+h

q−h

[
K

(
y − q

h

)
− (1 − p)

]2

dF (y)

= 4p (1−p)+4p2f (q0) (q0−q−h) +4(1−p)2f (q0) (q−h−q0)+o (h)

+ 4
∫ q+h

q−h

[
K

(
y − q

h

)
− (1 − p)

]2

dF (y)

= 4p (1 − p) − 4f (q0)
(
p2 + (1 − p)2

)
h

+ 4f (q0)
∫ q+h

q−h

[
K

(
y − q

h

)
− (1 − p)

]2

dy + o (h)

= 4p (1 − p) − 8Af (q0)h+ o (h) (16)

where

A =
∫ 1

0
K (u) (1 −K (u)) du > 0 (17)

for K (u) �= 1[0,∞) (u) . The last equality in (16) follows from the following
derivation, valid for symmetric cdf K (y) = 1 − K (−y) concentrated on
[−1, 1].

∫ q+h

q−h

[
K

(
y − q

h

)
−(1−p)

]2

dy = h

∫ 1

−1
[K(u)−(1 − p)]2 du

=h
∫ 1

0

(
(p−K(u))2 + (K(u) − (1 − p))2

)
du

=h
(
p2+ (1−p)2 +2

∫ 1

0
K (u) (K (u) − 1) du

)
.
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Next, we shall find the Taylor expansion for J2(h).

J2(h) =
∫ ∞

−∞

(
2
h
k

(
y − q

h

))
F (dy)

=
2
h

∫ ∞

−∞
k

(
y − q

h

)(
f (q) + f ′ (q) (y − q)

+
1
2
f ′′(q) (y − q)2 + o

(
h2

))
dy

= 2f (q) + κ2h
2f ′′(q) + o

(
h2

)
= 2f (q0) + κ2h

2
(
f ′′(q0) + f ′ (q0)J (p)

)
+ o

(
h2

)
(18)

By (15)–(18) we get the right derivative of the ratio

d

dh
σ2(h)

∣∣
h=0+ =

(
J ′

1J
2
2 − 2J ′

2J2J1

)
/J4

2

∣∣
h=0+

= −2
A

f (q0)
.

Hence, the variance σ2(h) is decreasing for sufficiently small h. We summa-
rize this result in the following theorem.

Theorem 4.1 Assume that the probability distribution corresponding to
the cdf K is symmetric, non-degenerated, concentrated on interval (−1, 1)
and with a derivative k = K ′ on (−1, 1) such that k(0) > 0. If F is four
times continuously differentiable with F ′ = f then the asymptotic variance
σ2(h) of Q̂p,h is decreasing in a vicinity of h = 0 and

σ2(h) =
p (1 − p)
f2(Q(p))

− 2
A

f (Q(p))
h+ o(h), (19)

where A > 0 is given by (17).

Let us note that (19) implies that the limit of asymptotic variances σ2(h)
equals the asymptotic variance of the sample quantile (cf. Mosteller, 1946)

lim
h→0

σ2(h) =
p (1 − p)
f2(Q(p))

.

We refer to Green (2002) for simulations in the case of the Uniform
U(0, 1), Exponential E(β = 2) and the standard normal N (0, 1) distri-
butions. The results of simulations show very good agreement with the
theoretical results. In Figures 1 – 3 we show in the left-hand side graphs
the dependence on h of Qph (F ), the perturbed p-quantiles of F and in the



286 Andrzej S. Kozek

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2. 5

2

1. 5

1

0. 5

0

0.5

1

1.5

2

2.5

Graphs of Qph as a function of h.

N(0,1) distribution, U(− h,h) perturbation

h

Q ph

p = 0.05 

p = 0.25 

p = 0.5 

p = 0.75 

p = 0.95 

−

−

−

−

−

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

h

A
sy

m
pt

ot
ic

 v
ar

ia
nc

e

Asymptotic variance of the sample Qph estimator.     

N(0,1) distribution. U(− h,h) perturbation.

p = 0.5 

p = 0.25 p = 0.75 

p = 0.05 

p = 0.95 

Figure 1: Perturbed quantile functionals Qp,h (F ) (left) and asymptotic variances of sam-
ple perturbed quantiles Q̂p,h (right) in the case of normal N(0, 1) probability distribution
and uniform perturbation U(−h, h).

right-hand side graphs, the corresponding asymptotic variances of the sam-
ple functionals Qph

(
F̂n

)
.

Figures 1 – 3 show how the neighbourhood of h = 0, over which the
asymptotic variance is decreasing, depends both on the distribution func-
tion F and on the value of p ∈ (0, 1). Let us note the discontinuity of the
first derivative of the variance of Qph

(
F̂n

)
in Figures 2 and 3. These points

correspond to distances between the corresponding quantiles and the bound-
ary of the support of the probability distribution of Y . Though smoothness
of the functional Qph (F ) is not affected at these points yet, the estimator of
the score function J(p) breaks down at p = 0.05 as we can see in Figure 8.
This provides a practical tip on that the window widths h exceeding distance
from quantiles to the boundary of the support should not be included into
the window design. These examples also remind that conclusions of Theo-
rems 3.1 and 4.1 are valid only in the regions where the Taylor expansion
provides an adequate approximation.

5 Combined Perturbed Quantiles

Theorems 3.1 and 4.1 suggest that, similarly as in Kozek (2003), by
perturbing the sample distribution we may produce robust estimators with
good statistical properties. The perturbed quantile functionals Qp,h (F ) dif-
fer from the quantile Q(p) of F only by κ2

2 J(p)h2 + o
(
h2

)
while the cor-

responding M-estimators Qp,h
(
F̂n

)
have smaller asymptotic variance than
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Figure 2: Perturbed quantile functionals Qp,h (F ) (left) and asymptotic variances of
sample perturbed quantiles Q̂p,h (right) in the case of exponential Exp(2) probability
distribution and uniform perturbation U(−h, h).
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Figure 3: Perturbed quantile functionals Qp,h (F ) (left) and asymptotic variances of sam-
ple perturbed quantiles Q̂p,h (right) in the case of uniform U(0, 1) probability distribution
and uniform perturbation U(−h, h).
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that of the sample quantile. In an attempt to combine these features we
consider the following strategy to estimate simultaneously quantiles and the
score function.

1. Let Y1, . . . , Yn be a sample from F . Choose p ∈ (0, 1) and select a
window design, ie. a set of values

0 ≤ h1 < h2 < · · · < hm, with m > 3. (20)

2. Calculate estimators Qp,hi

(
F̂n

)
for i = 1, 2, . . . ,m.

3. Find the least squares method approximation to values
(
hi, Qp,hi

(
F̂n

))
,

i = 1, 2, . . . ,m, by a polynomial

q(h) = β0 + β1h
2 + β2h

3. (21)

4. Denote by β̂0, β̂1 and β̂2 the coefficients of the fitted polynomial.

5. Set Q̂n(p) = β̂0 as an estimator of the quantile Q(p).

6. Set Ĵn(p) = 2β̂1/κ
2 as an estimator of the score function J(p) =

− f ′(Q(p))
f(Q(p)) .

We have the following heuristic motivation for estimators Q̂n(p) and
Ĵn(p). Theorem 3.1 implies that in the Taylor expansion of Qp,h (F ) the
linear term in h vanishes, so, a polynomial q(h) approximating Qp,h should
have zero as a linear term. We suggest to take for q(h) a polynomial of degree
3, with the quadratic term estimating the score function and, as the Tay-
lor expansion is valid only locally, the cube term should, hopefully, reduce
the bias of Ĵn. The window design {h1, h2, · · · , hm} allows for information
about the quantile to be inferred from M-estimators Qp,hi

(
F̂n

)
having lower

variance than the sample quantile. The intercept β̂0 estimates the quantile,
up to o(hm), in an unbiased way and has lower variance than the empirical
quantile. The window design plays an important role in the variance reduc-
tion, however the choice of an optimal window design is beyond the scope of
the present paper.

In Figures 4–6 we show a comparison of asymptotic standard deviations
of the sample quantiles and of our estimators Q̂n(p).

Figures 7 and 8 show the score function J(p) and the averaged values of
estimators Ĵn(p).
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Figure 4: Asymptotic variances of empirical quantiles and of sample combined perturbed
quantiles for normal distribution N(0, 1), uniform U(−h, h) perturbation and the window
design (0, 0.1, 0.5, 1, 2).
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Figure 5: Asymptotic variances of empirical quantiles and of sample combined perturbed
quantiles for exponential distribution Exp(2), uniform U(−h, h) perturbation and the
window design (0, 0.1, 0.5, 1, 2).
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Figure 6: Asymptotic variances of empirical quantiles and of sample combined perturbed
quantiles for uniform distribution U(0, 1), uniform U(−h, h) perturbation and the window
design (0, 0.1, 0.5, 1, 2).
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Figure 7: Score function J(p) and the mean of estimator Ĵn(p) values. Normal distribu-
tion N(0, 1), uniform U(−h, h) perturbation and the window design (0, 0.1, 0.5, 1, 2).
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Figure 8: Score function J(p) and the mean of estimator Ĵn(p) values. Exponential dis-
tribution Exp(2), uniform U(−h, h) perturbation and the window design (0, 0.1, 0.5, 1, 2).
Notice inconsistency of Ĵn at p = 0.05, where the window design ranges far beyond the
support of the exponential distribution.

6 Asymptotic Theory

In the present section we derive the joint asymptotic distribution of es-
timators Q̂n(p) and Ĵn(p). Let

Q̂n,p,h1,...,hm

(
F̂n

)
=

[
Qp,h1

(
F̂n

)
, . . . , Qp,hm

(
F̂n

)]T
denote a vector of estimators Qp,hj

(
F̂n

)
, j = 1, 2, . . . ,m, based on sample

Y1, Y2, . . . , Yn and minimizing (13) with h = h1, h2, . . . , hm, respectively. By
Corollary 3.2, p. 133 of Huber (1981) we get asymptotic distribution of this
vector of M-estimators

Q̂n,p,h1,...,hm

(
F̂n

)
∼ AN

(
Qp,h1,...,hn (F ) ,

1
n
Σ

)
, (22)

where

Qp,h1,...,hn (F ) = [Qp,h1 (F ) , . . . , Qp,hm (F )]T (23)
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and

Σ =
( �

ψ(y,Qp,hi
(F ))ψ(y,Qp,hj

(F ))dF (y)
�
ψt(y,Qp,hi

(F ))ψt(y,Qp,hj
(F ))dF (y)

)
i=1,...,m
j=1,...,m

. (24)

The regression design matrix corresponding to the windows design {h1, . . . ,
hm} is given by

D =




1 h2
1 h3

1

1 h2
2 h3

2
...

...
...

1 h2
m h3

m




and hence the coefficients of the the least squares polynomial approximation
to values of Q̂n,p,h1,...,hm

(
F̂n

)
are given by

[
β̂0, β̂1, β̂2

]T
= BQ̂n,p,h1,...,hm

(
F̂n

)
=

(
DTD

)−1
DT Q̂n,p,h1,...,hm

(
F̂n

)
.

(25)
Let C = [Bij ] i=1,2

j=1,...,m
be the upper, of size (2,m), sub-matrix of B =(

DTD
)−1 DT . With some algebra we get

[
β̂0

β̂1

]
=




(S4S6−S2
5)T0+(S3S5−S2S6)T2+(S2S5−S3S4)T3

(S4S6−S2
5)S0+(S3S5−S2S6)S2+(S2S5−S3S4)S3

(S5S3−S2S6)T0+(S0S6−S2
3)T2+(S3S2−S0S5)T3

(S5S3−S2S6)S2+(S0S6−S2
3)S4+(S3S2−S0S5)S5


 , (26)

where

Si =
m∑
j=1

hij and Ti =
m∑
j=1

hijQphj

(
F̂n

)
. (27)

The joint asymptotic distribution of Q̂n(p) and Ĵn(p) is given by[
Q̂n(p)
Ĵn(p)

]
∼ AN

(
CQp,h1,...,hn (F ) ,

1
n
CΣCT

)
. (28)
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Muñoz Pérez, J. and Fernández Palaćın, A. (1987). Estimating the quantile func-
tion by Bernstein polynomials. Comput. Statist. Data Anal., 5, 391-397.
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