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Abstract

Given a recursive distributional equation (RDE) and a solution p of it, we
consider the tree indexed invariant process called the recursive tree process
(RTP) with marginal u. We introduce a new type of bivariate uniqueness
property which is different from the one defined by Aldous and Bandyopad-
hyay (2005), and we prove that this property is equivalent to tail-triviality
for the RTP, thus obtaining a necessary and sufficient condition to determine
tail-triviality for a RTP in general. As an application we consider Aldous’
construction of the frozen percolation process on a infinite regular tree (Al-
dous, 2000) and show that the associated RTP has a trivial tail.
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1 Introduction, Background and Motivation

Fixed-point equations or distributional identities have appeared in the
probability literature for quite a long time in a variety of settings. The recent
survey of Aldous and Bandyopadhyay (2005) provides a general framework
to study certain type of distributional equations.

Given a space S write P (S) for the set of all probabilities on S. A
recursive distributional equation (RDE) (Aldous and Bandyopadhyay, 2005)
is a fixed-point equation on P (S) defined as

X £ g(&(X;:1<j<*N)) on S, (1.1)

where it is assumed that (Xj),., are i.i.d. S-valued random variables with
same distribution as X, and are independent of the pair (¢, N). Here N is a
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non-negative integer valued random variable, which may take the value oo,
and ¢ is a given S-valued function. (In the above equation by “<* N” we
mean the left hand side is “< N” if N < oo, and “< N” otherwise). In (1.1)
the distribution of X is unknown while the distribution of the pair (¢, N),
and the function g are the known quantities. Perhaps a more conventional
(analytic) way of writing the equation (1.1) would be

p="T (), (1.2)

where T : P — P (S) is a function defined on P C P (S) such that T (u) is
the distribution of the right-hand side of the equation (1.1), when (X})
are i.i.d. p € P.

jz1

As outlined in Aldous and Bandyopadhyay (2005) in many applications
RDEs play a very crucial role. Examples include study of Galton-Watson
branching processes and related random trees, probabilistic analysis of al-
gorithms with suitable recursive structure Rosler and Riischendorf (2001),
Rosler (1992), statistical physics models on trees, Aldous and Steele (2004),
Aldous (2000), Gamarnik, Nowicki and Swirscsz (2004), Bandyopadhyay
(2005), and statistical physics and algorithmic questions in the mean-field
model of distance (Aldous, 1992, 2001, Aldous and Steele, 2004). In many of
these applications, particularly in the last two types mentioned above, often
one needs to construct a particular tree indexed stationary process related
to a given RDE, which is called a recursive tree process (RTP) (Aldous and
Bandyopadhyay, 2005).

1.1.  Recursive tree process. More precisely, suppose the RDE (1.1) has
a solution, say p. Then as shown in Aldous and Bandyopadhyay (2005),
using the consistency theorem of Kolmogorov (Billingsley, 1995), one can
construct a process, say (Xj);c), indexed by V := {0} Ug> N?, such that

() Xjmp Vie,

1 or eac > 0,(Xj);—,; are independent,

ii) F h d >0, (Xi)j=q ind d

(i) Xi=g(&(Xy:1<5 <" Ny) Vie, (13)
(iv) X; is independent of {(fi/,Ny) '] < |1|} Viey,

111

where (&;, Ni);c) are taken to be i.i.d. copies of the pair (£, N), and by |-| we
mean the length of a finite word. The process (Xj);.y is called an invariant
recursive tree process (RTP) with marginal . The i.i.d. random variables
(&, N i)iey are called the innovation process. In some sense an invariant RTP
with marginal u, is an almost sure representation of a solution p of the RDE
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(1.1). Here we note that there is a natural tree structure on V. Taking V as
the vertex set, we join two words i,i’ € V by an edge, if and only if, i’ = ij or
i =1'j, for some j € N. We will denote this tree by To,. The empty-word ()
will be taken as the root of the tree Too, and we will write )5 = j for 7 € N.

In the applications mentioned above the variables (Xj); ), of a RTP are
often used as auxiliary variables to define or to construct some useful random
structures. To be more precise in Aldous (2001) they were used to obtain
“almost optimal matching”, while in Aldous (2000) they were used to define
the percolation clusters. In such applications typically the innovation process
defines the “internal” variables while the RTP is constructed “externally”
using the consistency theorem. It is then natural to ask whether the RTP is
measurable only with respect to the i.i.d. innovation process (&;, Nj).

DEFINITION 1.1. An invariant RTP with marginal v is called endoge-
nous, if the root variable Xy is measurable with respect to the o-algebra

G = a({(gi,zvi) iev}).

This notion of endogeny has been the main topic of discussion in Aldous
and Bandyopadhyay (2005). The authors provide a necessary and sufficient
condition for endogeny in the general setup (Aldous and Bandyopadhyay,
2005, Theorem 11). A non-trivial application of this result is given in Bandy-
opadhyay (2002), where it is proved that the invariant RTP associated with
the logistic RDE, which appears in the study of the mean-field random as-
signment problem (Aldous, 2001) is endogenous. Another interesting exam-
ple arise in the construction of the frozen percolation on an infinite 3-regular
tree by Aldous (2000), where a particular RTP has been used to carry on
the construction. This example is one of our main motivations, so we discuss
this example in more detail in Section 1.5.

As discussed in Aldous and Bandyopadhyay (2005) in some sense, the
concept of endogeny tries to capture the idea of having “no influence of the
boundary at infinity” on the root. In this direction a closely related concept
would be the tail-triviality of a RTP. To give a formal definition of the tail
of a RTP, let (Xj);c) be an invariant RTP with marginal u, where 4 is a
solution of the RDE (1.1). The tail o-algebra of (Xj);.)) is defined as

H= N Hy, (1.4)
n>0

where

My =0 ({Xi

li| > n}) . (1.5)
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Naturally, we will say an invariant RTP has trivial tail if the tail o-algebra H

is trivial. Because the innovation process (£;, NVi);cy) is ii.d. so it is natural

to expect that if a RTP is endogenous, then it has a trivial tail.
PROPOSITION 1.1. Suppose 1 is a solution of the RDE (1.1) and (Xj);cy

be an invariant RTP with marginal u. Then the tail of (Xi)ieV is trivial if
it 1s endogenous.

Thus one way to conclude that a RTP is not endogenous will be to show
that it has a non-trivial tail. The following easy example shows that the
converse may not hold.

EXAMPLE 1.1. Take S := {0,1}. Let 0 < ¢ < 1 and ¢ ~ Bernoulli(qg).
Consider the RDE
X L e+ X, (mod 2), (1.6)

where X7 has same distribution as X, and is independent of £.
If T is the associated operator defined by the right-hand side of the

equation (1.6), then it is easy to see that 7' maps a Bernoulli (p) distribution
to a Bernoulli (p’) distribution where

pPr=p(l-q+q(l-p).
Thus the unique solution of the RDE (1.6) is Bernoulli (3).

In this example because there is no branching (N = 1), so the invari-
ant RTP with marginal Bernoulli (%) can be indexed by the non-negative
integers, we denote it by (X;),-,, where Xj is the root variable and it satisfy

X, =&+ Xy as. V>0,
where (&;);5 are i.i.d. Bernoulli(¢g). Tt is then easy to see that we must have
Xt and (&o,&1,...,&) are independent, for all 7 > 0.

Therefore, Xy is independent of the innovation process (&;);~, thus the
RTP is not endogenous. The following proposition whose proof we defer till
Section 2, states that the RTP (X;),., has trivial tail. This gives an example
of an invariant RTP which is not endogenous but has trivial tail.

PROPOSITION 1.2. The invariant RTP with marginal Bernoulli (%) as-
sociated with the RDE (1.6) has trivial tail.

So proving tail-triviality of a RTP is weaker than proving endogeny, but
in some cases it might help to prove non-endogeny by showing that the tail
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is not trivial. Also in general, studying the tail of a stochastic process is
mathematically interesting.

In this article we provide a necessary and sufficient condition to determine
the tail-triviality for an invariant RTP. This condition is in the same spirit
of the equivalence theorem of Aldous and Bandyopadhyay (2005, Theorem
11). But before we state our main result we first introduce a new type of
bivariate uniqueness property, which is different than the one introduced in
Aldous and Bandyopadhyay (2005), we will call it the bivariate uniqueness
property of the second kind.

1.2.  Bivariate uniqueness property of the second kind. Consider a gen-
eral RDE given by (1.1) and let T': P — P (S) be the induced operator. We
will consider a bivariate version of it. Write P for the space of probability
measures on S2 = S x S, with marginals in P. We can now define a map
TQT:P? 5P (52) as follows

DEFINITION 1.2. For a probability u? € P®), (T @ T) (u(Q)) is the joint
distribution of

g(6xV1<j< W)
g (n,XJ(-Q),l <j<t M)

where we assume

1. (X](-l),XJ(-Z)) are independent with joint distribution p on S?;
jz1

2. (§,N) and (n, M) are i.i.d;

3. the families of random variables in 1 and 2 are independent.

We note that here we use independent copies of the innovation pair in
the two coordinates. We also note that this is preciously where this bi-
variate operator differs from the bivariate operator defined in Aldous and
Bandyopadhyay (2005), where the innovation pair was kept same at each
coordinate.

From the definition it follows that
LEMMA 1.1. (a) If p is a fized point for T, then the associated product
measure u ® p is a fized point for T Q@ T.

(b) If u(2) 1s a fized point for T @ T, then each marginal distribution is a
fixed point for T.
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So if v is a fixed point for T' then p ® i is a fixed point for T ® T' and
there may or may not be other fixed points of T ® T" with marginal p.

DEFINITION 1.3. An invariant RTP with marginal p has the bivariate
uniqueness property of the second kind if 4 ® p is the unique fized point of
T QT with marginal .

1.3. Main result : an equivalence theorem. Our main theorem is the
following general result linking the tail triviality of an invariant RTP with
the bivariate uniqueness property of the second kind.

THEOREM 1.1. Suppose S is a Polish space. Consider an invariant RTP
with marginal distribution pu.

(a) If the RTP has trivial tail then the bivariate uniqueness property of the
second kind holds.

(b) Suppose the bivariate uniqueness property of the second kind holds. If
also T ® T s continuous with respect to weak convergence on the set
of bivariate distributions with marginals p, then the tail of the RTP s
trivial.

(¢) Further, the RTP has a trivial tail if and only if
(TeT)" (A/) L weu,

where " is the diagonal measure with marginal ju, that is, if (X,Y) ~
', then P (X =Y) =1 and X,Y ~ p.

1.4. Heuristic behind the equivalence theorem. Suppose p is a solution
of the RDE (1.1) and let (Xj);.), be an invariant RTP with marginal z. Let
(&, Ni);cy be the iid. innovation process, and G, := o ({(&, Vi) il <n})
be the o-algebra for the innovations in first n-generations of the tree Two.
From the construction (1.3) of the RTP we note that for any n > 0 the
root variable X is measurable with respect to the o-algebra o (G,, U Hp41),
where H,, 11 is as defined in (1.5). So heuristically to check whether the tail
of the RTP H = N;,>oH, contains any non-trivial information, we may want
to do the following :

Start with “same input at infinity.” Take two independent but
identical copies of the innovation process and run through the
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Input at Infinity Output

ﬁx@

Same Inpu | ndepen@ent Independent
Innovations Qutput ?
L. — =Y,

Figure 1: Intuitive picture for the bivariate uniqueness of the second kind

recursions in (1.3). Finally obtaining two copies of the RTP, say
(Xi);ey and (Yi);c), with same marginal p. Check if the root
variables X and Y}, are independent or not.

Figure 1 gives this intuitive picture. The part (c) of the Theorem 1.1 makes
this process rigorous. Moreover we notice from definition the bivariate pro-
cess (Xj, Yi);c) is a RTP associated with the operator T'® 7. This leads to
the notion of bivariate uniqueness property of the second kind. We would
like to note that the proof of the Theorem 1.1 is nothing but to make this
heuristic rigorous.

1.5.  Application to frozen percolation. As mentioned earlier, one of our
main motivating example arise in the context of frozen percolation process
on an infinite regular tree. For sake of completeness we here provide a very
brief background on frozen percolation process, readers are advised to look
at Aldous (2000), Aldous and Bandyopadhyay (2005) for more details.

Frozen percolation process was first studied by Aldous (2000) where he
constructed the process on a infinite 3-regular tree. Let T3 = (V, ) denote
the infinite 3-regular tree. Let (Ue), e be i.i.d. Uniform[0, 1] edge weights.
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Consider a collection of random subsets A; C &€ for 0 < ¢t < 1, whose
evolution is described informally by :

Ay is empty; for each e € &, at time t = U, set A, = A;— U {e}
if each end-vertex of e is in a finite cluster of A;_; otherwise set

A=A, (*)

(A cluster is formally a connected component of edges, but we also consider
it as the induced set of vertices). Qualitatively, in the process (A;) the
clusters may grow to infinite size but, at the instant of becoming infinite
they are “frozen”, in the sense that no extra edge may be connected to an
infinite cluster. The final set A; will be a forest on T3 with both infinite and
finite clusters, such that no two finite clusters are separated by a single edge.
Aldous (2000) defines this process (A;) as the frozen percolation process.

Although this process is intuitively quite natural, rigorously speaking it
is not clear that it exists or that () does specify a unique process. In fact Itai
Benjamini and Oded Schramm have an argument that such a process does
not exist on the Z2lattice (see the remarks in Section 5.1 of Aldous, 2000).
But for the infinite 3-regular tree, Aldous (2000) gives a rigorous construction
of an automorphism invariant process satisfying (*). This construction uses
the following RDE

Y £ (Vi AY;U) on I:=[L1]U{cc}, (1.7)

where (Y7, Ys) are i.i.d. with same distribution as Y, and are independent of
U ~ Uniform[0, 1], and ® : I x [0,1] — I is a function defined as

z if z>u
oo otherwise

& (a5 ) = { (18)

We will call (1.7) the frozen percolation RDE.

It turns out (Aldous, 2000) that the RDE (1.7) has many solutions. In
particular, solutions having no atom in [%, 1] are given by

valde) = 8 L < <a; vy ({oo}) = 2, (1.9)

where a € [%, 1], thus v = vy is the unique solution with support I.

Notice that for the RDE (1.7) N = 2, so a RTP with marginal v essen-
tially lives on a rooted binary tree, we will denote the vertex set in this case
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by V. Let (Y;) =~ be an invariant RTP with marginal v. Aldous’ construc-

icV
tion of the frozen percolation process (Aldous, 2000) uses these externally
defined random variables (Y;). . We refer the readers to look at Aldous

icV
(2000) for the technical details of this construction. Here we only mention

briefly what is the significance of the RTP (Yl)ev Let e = (u,v) be an edge

of the infinite regular binary tree T3 and let ¢ = (u,v) be a direction of it
which is from the vertex u to vertex v. Naturally the directed edge ¢ has
two directed edges coming out of it, which can be considered as two chil-
dren of it. Continuing in similar manner we notice that each directed edge
e represent a rooted infinite binary tree, which is isomorphic to V, and
the weights are defined appropriately using the i.i.d. Uniform edge weights
(Ue). If the frozen percolation process exists, then the time for the edge e
to join to infinite along the subtree defined by e s given by the variable
Yp. More preciously, such time should satisfy the distributional recursion
(1.7). However to prove the existence of the process such times are then ez-
ternally constructed using the RTP construction. Naturally it make sense to
ask whether these variables can only be defined using the i.i.d. Uniform[0, 1]
edge weights (see Remark 5.7 in Aldous, 2000), which is same as asking
whether the RTP is endogenous.

THEOREM 1.2. Any invariant recursive tree process associated with the
RDE (1.7) with marginal v has trivial tail.

This result does not resolve the question of endogeny, but it proves that
the version of the frozen percolation process constructed by Aldous (2000)
on an infinite 3-regular tree has trivial tail.

To give a bit of history, for several years we conjectured in seminar talks
that the RTP with marginal v is non-endogenous. Because the simulation
results suggested one of the condition equivalent to endogeny from Aldous
and Bandyopadhyay (2005, Theorem 11) fails for the solution v of the RDE
(1.7). In recent days for some time we thought we can prove the opposite,
but it turned out that our argument had some flaw in it. Fresh simulations
confirm our earlier belief that the RTP with marginal v is non-endogenous.
Till date to best of our knowledge a rigorous proof is yet to be found.

It is interesting to observe that if the RTP with marginal v is non-
endogenous then the frozen percolation process would have a kind of “spatial
chaos” property, that the behavior near the root would be affected by the
behavior at infinity. On the other hand in light of the Theorem 1.2, we note
that possible influence of infinity at the root is not coming from the tail of
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the process. Such examples are rare, our Example 1.1 is one such. But so
far we do not know a non-trivial example of this kind. Of course if non-
endogeny for frozen percolation is proved, then that together with Theorem
1.2 will provide one such.

1.6.  Outline of the rest of the paper. The rest of the article is divided as
follows. In the following section we provide some basic connection between
the root variable X of an RTP with the tail o-algebra H, and also give proofs
of Propositions 1.1 and 1.2. In Section 3 we give a proof of the equivalence
theorem and Section 5 contains the proof of the Theorem 1.2. We conclude
with Section 6 which contains some further discussion.

2 Connection Between Root and Tail of a RTP

Because of the recursive structure one would expect that the tail o-
algebra H is trivial, if and only if the root variable Xj is independent of it.
The following lemma preciously states that.

LEMMA 2.1. Xy is independent of H, if and only if H s trivial.

PRroOF. If the tail # is trivial then naturally X is independent of it. For
proving the converse we will need the following standard measure theoretic
fact whose proof is a straightforward application of Dynkin’s -\ Theorem
(Billingsley, 1995), so we omit it here.

LEMMA 2.2. Suppose (2, Z,P) be a probability space and let F*,G* and
H* be three sub-o-algebras such that F* is independent of H*; G* is inde-
pendent of H*; and F* and G* are independent given H*. Then o (F* U G*)
is independent of H*.

To complete the proof of the Lemma 2.1 we denote F2 := o (X3, |i| = n)
and F,, := o (Xj, |i]| < n). From assumption Xj is independent of H for all
i€ V. Fixn > 1 and let i # i’ be two vertices at generation n. From the
definition of RTP X; and Xj are independent, moreover they are indepen-
dent given H,4 for any £k > 1. Letting & — oo we conclude that X; and
Xy are independent given H. Thus by Lemma 2.2 we get that (Xj, Xy) is
independent of H, and hence by induction F 2 is independent of H.

Now let G,, = o ({(fi,Ni) ‘ li| <n }), then G,, is independent of H from

definition. Further G, is independent of F0 11 given Hy,p for any k > 1.
Once again letting kK — oo we conclude that G,, and F ?L 41 are independent
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given H. So again using Lemma 2.2 it follows that o (gn uFy +1) is inde-
pendent of H. But F, C o (Qn u fgﬂ) so F, is independent of H. But
Fn T Ho and hence H is independent of Ho O #H. This proves that H is
trivial. O

2.1.  Proof of Proposition 1.1. Let G, := o ((&, Ni), |i| <n). From def-
inition we have H,, | H and G, 1 G. Also for each n > 0, G,, is independent
of Hpy1. So clearly G is independent of H. Hence if the RTP is endogenous
then X is G-measurable, so it is independent of H. The rest follows from
the Lemma 2.1.

2.2.  Proof of Proposition 1.2. There are several ways one can prove
Proposition 1.2, perhaps the simplest is to apply the equivalence theorem
(Theorem 1.1). This will also illustrate an easy application of the equivalence
theorem. A non-trivial application is given in Sections 4 and 5.

ProOOF. We will show that the bivariate uniqueness of the second kind
holds for the unique solution Bernoulli () of the RDE (1.6). So by part (b)
of the equivalence theorem (Theorem 1.1) the tail-triviality will follow (note
that in this case the continuity condition trivially holds).

Let (X,Y) be S2-valued random pair with some distribution such that
the marginals are both Bernoulli(1/2). Let

f=P(X=1,Y=1)=P(X=0Y =0).

Suppose further that the distribution of (X,Y") satisfies the following bivari-

ate RDE
X\ 4 ([ Xi+¢
(Y) d <Y1+n> (mod 2),

where (X1,Y7) is a copy of (X,Y) and independent of (£, 7n) which are i.i.d.
Bernoulli(g). So we get the following equation for 6

0=q*0+ (1 —q)*0 +2¢(1 —q)(1/2 - 0). (2.1)
The only solution of (2.1) is § = 1/4, thus X and Y must be independent,
proving the bivariate uniqueness of the second kind. a

3 Proof of the Equivalence Theorem

(a) Let X be a fixed point of T'® T with marginals . Consider two inde-
pendent and identical copies innovation processes given by ((&;, N;j),i € V)
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and ((n;, M;),i € V). Using Kolmogorov’s consistency theorem (Billingsley,
1995), we can then construct a bivariate RTP ((X.(l),X-(Z)) 1€ V) with

1 1

A= dist(Xél),XéQ)). We note that this construction is no different than

what one does to obtain an univariate RTP as in (1.3), and the bivariate RTP

has the similar properties as well. Notice that (Xi(l)) v and (Xi@))' v
i€ 1€

are two (univariate) RTPs with marginal . So from assumption both has
trivial tails.

We define the following o-algebras

HO = a({Xi“) ‘ H Zn}); (3.1)
"D = o ({Xi@) li| > n}) : (3.2)
HY = o ({(X(l),Xi(2)) ‘|i| > n}) (3.3)
and we also define
Tail of (Xi(l))iev =HO = 0 HD; (3.4)
Tail of (Xi(?))iev =N = nr;O’HSEE (3.5)
Tail of (Xi(”,Xi(?))ieV =1 = néoyg;). (3.6)

Let f and g be two bounded measurable functions. Fix n > 0,
B 1 (x1") (x) 1]
[ () [ <2 o () 1]
= [ () [ e (50) ],
where the first equality follows from the recursive construction and because

the two innovation processes are independent. Taking limit as n — oo and
using the martingale convergence theorem we get

Blr (") (337) [1] =B [r (") [#0] x Bl (x7) [2)].
Because both HM) and H?) are trivial, so taking a further expectatioSﬁi
conclude that

B[r(x0)o ()] =5 s (")) 2o (47)].
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So Xél) and XQ()2) are independent, that is, A = p ® p, which implies that
the bivariate uniqueness property of the second kind holds.

(b) Let (Xj);cy be the invariant RTP with marginal p. H, and H be
as defined in (1.5) and (1.4) respectively. Observe that H, | H. Now
fix A : S — R a bounded continuous function. So by reverse martingale
convergence

E [A(X@)‘Hn] "B [A(X@)‘H} . (3.10)

Let (ni, Mj);c) be independent innovations which are independent of (Xj);.y)
and (&, Ni);ep- For n > 1, define Y{" := Xj if |i| = n, and then recursively
define Y;" for |i| < n using RTP construction (1.3), but replacing &; by n; and

Nj by M; to get an invariant RTP (Y;") of depth n. Observe that X 4 Yy
Further given H,, the variables Xy and Yj* are conditionally independent
and identically distributed. Now let

2
52(A) = HE [A(X@)‘Hn] —E[A(Xy)] H2 : (3.11)
We calculate
F2(A) = E[(E [ACx0)|a] - [A(X@)]>2]
- o & [0 )
= Var (A(Xy)) — E[Var( (X@)"Hn)}
= Var (A(X))) — [(A(X@)—A(Ymn))ﬂ. (3.12)

The last equality uses the conditional form of the fact that for any random
variable U, one has Var(U) = iE [(U; — Us)?|, where Uy, Us are i.i.d. copies
of U.

Now suppose we show that

(Xp, V) -5 (X*,7%) (3.13)

for some limit (X*,Y*). From the construction,

[yt ] £ ren([i]),

and then the weak continuity assumption on T'® T implies

v ] £ wen(]5])
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Also by construction we have Xy 2 Yy < p for all n > 1, and hence

d d . o .
X* = Y* = pu. Now since we assume that the bivariate uniqueness

property of the second kind holds, so X* and Y* must be independent.
Since A is a bounded continuous function, (3.13) implies

E“MX@—AW%V}%E“A@ﬂ—AGﬂf]:ﬂhﬂMXw (3.14)

and so using (3.12) we see that o2(A) — 0. Hence from (3.11) and (3.10)
we conclude that A(Xp) is independent of H. This is true for every bounded
continuous A, proving that Xy is independent of H, so from Lemma 2.1it
follows that H is trivial.

Now all remains is to show that limit (3.13) exists. Fix f :S — R and
h:S — R, two bounded continuous functions. Again by reverse martingale
convergence

B [(X0)|[Ha] 25 E [1(X0)|]

and similarly for h. So

E [f(Xp)h(Yy")]

B [B [£(Xo) (V) M|
B [B [£(X0)|[#a] B [1(X0) [#a] ]

the last equality because of conditional on H,, Xy and Y| are independent
and identically distributed. Letting n — oo we get

B [f(X)h()] — E[B[f(X)|¢] E[n(x)|g]].  (3.15)

Moreover note that Xj 4 Yy 4 i and so the sequence of bivariate
distributions (Xp, Y}') is tight. Tightness, together with convergence (3.15)
for all bounded continuous f and h, implies weak convergence of (Xy, Y") .

(c) First assume that (T ®T)" () LN p ® p, then with the same
construction as done in part (b) we get that

(Xo.Y§) —= (X7,
where X* and Y* are independent copies of Xj. Further recall that A is
bounded continuous, thus using (3.12), (3.11) and (3.10) we conclude that
A(Xy) is independent of #H. Since it is true for any bounded continuous
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function A, thus X is independent of H. Thus again by Lemma 2.1 the
RTP has trivial tail.

Conversely, suppose that the invariant RTP with marginal p has trivial
tail. Let A; and Ay be two bounded continuous functions. Note that the vari-
ables (Xj, Y@”), as defined in part (b) has joint distribution (T ® T)" (u”").
Further, given H,,, they are conditionally independent and have same con-
ditional law as of X given H,. So

B[M(X) A207)] = E[B[M(X0)[Ha] B[220X0)|1]]
& E [E [AI(X@)"H] E [AQ(X@)"HH
= E[A(Xp)]E[A2(Xp)]

The convergence is by reverse martingale convergence, and the last equality
is by tail triviality and Lemma 2.1. So from definition we get

(TeT)" (uf) L (X0Yy) 5 pop

4 Bivariate Uniqueness Property of the Second Kind for the
Frozen Percolation RDE

In this section we prove the bivariate uniqueness property of the second
kind for the frozen percolation RDE (1.7).

THEOREM 4.1. Consider the following bivariate RDE,
X\ a [ (X1 AXyU) (41)
Y N O (Y1 ANY; V) )7 ’

where (X;,Yj);_ 5 are i.i.d. with same joint law as (X,Y) and have same
marginal distribution v given by

v(de) =3 l<z<1; v({oo}) =13, (4.2)

— 220

and are independent of (U, V') which are i.i.d. with Uniform[0,1] distribution;
and ® is given by (1.8). Then the unique solution of this bivariate RDE (4.1)
18 the product measure v Q@ v.

PROOF. Since v is a solution of the RDE (1.7), so by Lemma 1.1 (a),
the product measure v ® v is a solution of the bivariate RDE (4.1). We will
show it is the unique solution. Suppose (X,Y’) is a solution of (4.1), and
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let F(z,y) := P (X <z,Y <y), for z,y € [0,1] be the joint distribution
function. Notice that if (z,y) € [0,1]?\ D where D := [3, 1]2 then F(z,y) =
0. Now from equation (4.1) if z,y € [%, 1] then

F(z,y)
=P (®(X) A Xp;U) <z, (Y1 AYy; V) <)
(U<X1/\X2<$ V<YiAY: <y)

Lixinxs>0) — Lixinxssa) (Lviavesv) — Lviavesy)) Lw<s) Lv<y)]

/ / (G*(z,y) — G*(z,v) — G*(u,y) + G*(u,v)) dvdu (4.3)
where G(z,y) := P (X > z,Y > y), which can be written as
G(r,y) = Flz,y) -P(X <z)-P(({Y <y)+1
= Fl@y)+5+35 1. (4.4)

F‘urther notice that G(z,y) = 1 if z,y < %; G(z,y)
y < ; and finally G(z,y) = -~ if y € [%,1] and z

2y
wrltten as
F(J?,y) = xyGQ(w,y)—ﬁ——vL?’
y T ry
—m/lG (m,v)dv—y/1 GZ(u,y)du—i—/1 /IGZ(u,v)dvdu,
2 2 2 72
(4.5)
when =,y € [%,1]. We know that Gy (z,y) := ﬁ on [%,1] X [%,1] is

a solution of the equation (4.5) which represent the v ® v solution of the
bivariate equation (4.1). Let Fj be the distribution function for this solution.
Note that for this solution Fy(1,1) = Go(1,1) = I is the mass at the point
(00, 00).

Let H(z,y) = 1 — G(z,y)/Go(z,y), where 0 < z,y < 1. Notice that
H =0 on [0,1]? \ D. Moreover for (z,y) € D,
G(z,y) = P(X>uzY >y)

< min(P(X >z),P(Y >y))
1

Vy)
=2 G()(flf,y) )

= 3G
1
2zy

IN



TAIL-TRIVIALITY OF A RECURSIVE TREE PROCESS 17

where the last inequality follows because % <z,y <1 Thus -1 < H(z,y) <

1 for all (z,y) € D. To prove the bivariate uniqueness all we need to show
isH=0onD.

Recall that G satisfy (4.5), that is,

y x z ry
—x /1 G3(xz,v) dv —y/1 G%(u,y)du+/1 /1 G2 (u,v) dudv .
2 2 2 72
Further by (4.4) and definition of H we have
FO(xay) - F(.’L‘,y) = Gﬂ(xay) - G(.’L‘,y) = Gg(x,y)H(x,y)
So using (4.5) we get

Go(x,y)H(x,y)
= Fo((L‘,y) —F(x,y)

= a2y (G%(m,y) — G2(x,y)) + /; /ly(Gg(u,v) — GZ(U,U)) du dv
2 72

—o [ (63w - @) do—y [ (G - 6 d.
2 2
(4.6)

Observe that

Gi-G*=G} - G3 (1 - H)’ =G} (2H — H?) , (4.7)
and also using Gy(z,y) = ﬁ on D, we get
= Go(z,y)H(z,y) (1 — 2y Go(z,y) (2 — H(z,y)))

= iGU(g:,y)H(x,y) (2+ H(z,y))

(4.8)
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Thus using (4.6), (4.7) and (4.8) we conclude that for (z,y) € D,

162y

Hw,y) = 2+ H(z,y)

z ry
[/1 /1 G2 (u,v)H (u,v) (2 — H(u,v)) dvdu
2 72

-z /l G2(x,v)H (z,v) (2 — H(z,v)) dv

—y/ G2 (u, ) H () (2 — H(u, y))d]

2+H$y [/ /1 ) (2 — H(u,v)) dvdu

~1 1vzH(ac v) (2 — H(z,v)) dv
2

T

1 qu(u y) (2 — H(u,y)) du] . (4.9)
2

=

Fix0<e< % then there exists a partition % =aqgr<a; <ar <...<

ap_1 < ar =1 of [%, 1] with equal lengths, such that

/“”1 /“Hl dv du /“i+1 du N 2/‘“’rl dv <
— — <e
u 112 o U2 0 V2

? J

VO0<ij<k-—1, (4.10)

where (z,y) € D. This we can do because the function s — = is a continuous

decreasing function on [%, 1].

Put B = [ai,ai+1] X [aj,aj11] and let || H [|; j:= sup, yep,; [H (2, y)|,
for 0 <1i,j <k —1. Start with ¢ = j = 0 and let (z,y) € B, observe that
from equation (4.9) we have

|H (z,y)]
‘2+ny‘ 1uv2 H(u,v) (2 — H(u,v)) dvdu
y T
3 [, # H@v) 2= H(z,v) dv—§ || g Hlu,y) (2= H(u,y)) du

2 2
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u22 H(u,v) (2 — H(u,v)) dvdu

‘2+H$y‘

_5/ H(z,v) (2 — H(z,0)) v——/ H(u,y) (2 — H(u,y)) du
3zvy || H Hz] / / dv d / dv /
< 3 ’U U 2 ’U 2
2+ H(x,y) um? T *
Qi1 Aj41 aj+1
<3| H i x [/ / dydy 4 / %+2/ g—gl (4.11)
a; a;

v J

where the last but one inequality follows because (z,y) € B; ; C D = [%, 1] 2,
and so x,y > %, and also because 1 < 2—H < 3 on D, and the last inequality
follows because 24+ H > 1 on D. So from (4.11) we get

A i

a]—

But we have chosen ¢ < %, so we must have
H(z,y) =0 forall (z,y) € B;;.

Now we do induction on two indices 7 and j in the following way. For
every fixed 0 <1 < k — 1 we start with ¢ = 7 = [ and then continue with
ie{l,l+1,....,k—1}, and 5 € {l,l+1,...,k— 1}, repeating the above
argument in each step. This finally yields

H(z,y) =0 forall (z,y) € D,

which completes the proof. O

5 Proof of Theorem 1.2

Now to prove the Theorem 1.2 we will use the part (b) of our equiva-
lence theorem (Theorem 1.1). The bivariate uniqueness of the second kind
has been proved in Theorem 4.1, so it only remains to check the technical
condition of Theorem 1.1(b).

For that suppose VT(L2) 4y 1@ where {VT(?)} . and @ are bivariate
n

distributions on I? with marginals v. Let F, be the distribution function for
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(2)

vy and F be that for v(2). We define G,, and G in similar manner as done
in equation (4.4). Following argument similar of derivation of the equation
(4.3) we get that for x,y € [%, 1],

Ty
T T(F)(z,y) — /0 /0 (G2(,) — G2 (2,0) — G2 (ur ) + G2 (u,)) dv du.

The rest follows using the dominated convergence theorem.

6 Remarks and Complement

6.1. Tail-triviality and long range independence. Gamarnik et al. (2004)
introduced the concept of long range independence for some particular RDEs,
similar concept was also used in later works (Bandyopadhyay, 2005, Bandy-
opadhyay et al., 2006). Borrowing their idea we define the long range inde-
pendence property for an invariant RTP as follows.

DEFINITION 6.1. Suppose (X;);c) be an invariant RTP with marginal p,
then we will say that the long range independence property holds if

lim sup p (dz’st (X@ ‘Xi =z, |i| = d) , u) =0, (6.1)
d— 00 ;€S
lij=d
where p is a metric for the weak convergence topology on P (S).

PROPOSITION 6.1. Suppose (X;);c)) is an invariant RTP with marginal
1 which has long range independence property as defined above, then it must
have trivial tail.

PROOF. Let H = QO’Hn be the tail of the RTP (Xj);.)) where H, is
n

as defined in (1.5). Let A : § — R be a bounded continuous function and
consider the conditional expectation E [A (Xp) ‘ ’Hn} , by martingale conver-

gence theorem
E [A (X,) ‘Hn} L E [A (X;) ‘ ’H} a.s.
On the other hand from the long range independence property it follows
B [A (X)) ‘Hn] S E[A(X)] as.,
since Xy ~ pu. Thus we get

B [A (X)) ‘H] —E[A(Xy)] as.,
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which is true for every bounded continuous function A, hence we must have
Xp independent of H. So by Lemma 2.1 we conclude that the tail of the
RTP is trivial. a

Now the converse is not necessarily true. To see this, we first note that in
order for a RTP to have the long range independence, the underlying RDE
need to satisfy certain properties. For example,

LEMMA 6.1. Suppose an invariant RTP with marginal i has long range
independence property. If T is the associated operator for the RDE with
domain P then for any p' € P we must have

™ (1) LN Loas m— oo. (6.2)

The proof of this lemma easily follows from equation (6.1), the details
are left for the readers. But from this lemma we see that if an invariant RTP
with marginal p has long range independence property then the underlying
RDE necessarily has unique solution . Now Aldous and Bandyopadhyay
(2005) gives several examples of RDEs which may have multiple solutions but
some of which can be endogenous. To give a specific example, we consider
the Quicksort RDE, which is given by

X L UX +(1-U)Xo+2UlogU+2(1 —U)log (1 —U)+1 on R, (6.3)

It is known that this RDE has a two parameter family of solutions (Fill et
al., 2000), and only those with finite first moment are endogenous (see Al-
dous and Bandyopadhyay, 2005, Theorem 21). So an invariant RTP with a
marginal which is a solution of (6.3) and has finite first moment, will be en-
dogenous and hence from Proposition 1.1 has trivial tail. But by Lemma 6.1
we conclude that this invariant RTP can not have long range independence
property because, the RDE (6.3) has many solutions.

Finally, even though it is not quite related to tail-triviality, but we still
note that the above example also shows that endogeny does not imply long
range independence property. Interesting enough the converse is not true
either. It is in fact easy to show that the unique invariant RTP of the
Example 1.1 discussed in Section 1 has long range independence property,
but it is not endogenous. In light of Lemma 6.1 one may conjecture that if
a RDE has unique solution with full domain of attraction, and the solution
is endogenous, then it must have the long range independence property, but
this to best of our knowledge remains as an open problem.
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6.2. Frozen percolation on r-reqular trees. Using exactly similar argu-
ments as done in the case of infinite regular binary tree one can construct an
automorphism invariant version of frozen percolation process on a infinite
r-regular tree T, in which each vertex has degree r > 3 (see Aldous, 2000)
for details). In this setting the RDE is given by

U

YY" L o (YTAYS A AY] 3U) on I' = [r%ll] U{oo),  (6.4)

where (Yf) are i.i.d. with same law as Y" and are independent of
1<j<r—1

U ~ Uniform[0,1]; and ®" : I" x [0,1] — I" is the function defined by
equation (1.8). It is easy to check that the unique solution of this RDE with

full support and having no atom in [r—il, 1} is given by

v (dy) = W Ar<y<l, V({ooh) = — .
(r=2)(r =1)r=2 yr-2 (r—1)r-2
(6.5)
Naturally the case r = 3 gives back the RDE (1.7) and its fundamental so-
lution v. Interesting enough our argument to prove the bivariate uniqueness
of the second kind for the frozen percolation RDE (1.7) extend essentially
unchanged in this setting (only the constants need to be changed). So the in-
variant RTP associated with the RDE (6.4) with marginal v" also has trivial

tail. Once again the question of non-endogeny remains open.
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